BACKWARD EVALUATION OF THE PZT VOLUME FRACTION IN PZT-SILICONE RESIN COMPOSITE BASED ON THE FAILURE STRAIN AND YOUNG MODULUS
Abstract
                                                     Â
ABSTRACT: Backward evaluation of the PZT volume fraction in PZT-silicone resin composite was achieved based on the failure strain and Young modulus of the composite, using a derived empirical model; ɤ  = φlnEc- nξc + N. Validity of the derived model anchored on the core model structure; ɤ+ nξc ≈ φlnEc+ N, considering that both sides of the structure are correspondingly near equal. This research presents PZT particle and silicone resin as the filler and matrix respectively. The trend and spread of results points shown in previous research significantly agrees with predicted results. Evaluated correlations between the PZT volume fraction and failure strain & Young modulus, using model-predicted results were all ˃ 0.99. Results evaluation show that the standard error incurred in predicting the PZT volume fraction, relative to the experimental results is ˂ 1.22%, for each value of the failure strain and Young modulus. This translates to over 98% model confidence level. Using experimental and model-predicted results, the PZT volume fraction per unit Young modulus and failure strain were 0.8316, 0.8503 & 0.8379 (%/MPa) and 1.2913, 1.3204 and 1.3012 respectively. The overall maximum deviation of the model-predicted PZT volume fraction from experimental results was 5.72%. The derived model will predict PZT volume fractions, within the experimental results range, on substituting into the model, evaluated failure strains and Young moduli, providing the boundary conditions are considered.
KEYWORDS: Evaluation, PZT volume fraction, PZT-silicon resin composite, failure strain, Young modulus
Full Text:
PDFReferences
Royon, M., Jamon, D., Blanchet, T., Royer, F., Vocanson, F., Marin, E., Morana, A., Boukenter, A., Ouerdane, Y., Jourlin, Y., Evenblij, R., Van Leest, T., De Smet, M., and Girard, S.(2021). Sol–gel waveguide-based sensor for structural health monitoring on large surfaces in aerospace domain. Aerosp. (Basel). 8, 109. doi:10.3390/aerospace8040109.
Wang, Y., Hu, S., Xiong, T., Huang, Y., and Qiu, L. (2021). Recent progress in aircraft smart skin for structural health monitoring. Struct. Health Monit. 14759217211056831, 147592172110568. doi:10.1177/14759217211056831.
Jiang, S., Shen, Y., Wang, S., Peng, Y., and Liu, Y. (2021). The effect of piezoelectric fiber rosette configurations on lamb wave direction detection for damage localization. J. Sensors 2021, 1–10. doi:10.1155/2021/9918049.
Ricci, F.,Monaco, E., Boffa, N., Maio, L., and Memmolo, V. (2022). Guided waves for structural health monitoring in composites: A review and implementation strategies. Prog. Aerosp. Sci. 129, 100790. doi:10.1016/j.paerosci.2021.100790.
Zhang, Y. (2016). In situ fatigue crack detection using piezoelectric paint sensor. J. Intelligent Material Syst. Struct. 17, 843–852. doi:10.1177/1045389x06059957.
Rocha, H., Semprimoschnig, C., and Nunes, J. P. (2021). Sensors for process and structural health monitoring of aerospace composites: A review. Eng. Struct. 237, 112231. doi:10.1016/j.engstruct.2021.112231.
Kang, G.-D., and Cao, Y.-M. (2014). Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review. J. Membr. Sci. 463, 145–165. doi:10.1016/j.memsci.2014.03.055.
Jin, L., Ma, S., Deng, W., Yan, C., Yanga, T., Chu, X., Tiang, G., Xiong, D., Lu, J., and Yang, W., (2018). Polarization free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy 50, 632–638. doi:10.1016/j.nanoen.2018.05.068.
Pramanik, R., and Arockiarajan, A. (2019). Effective properties and nonlinearities in 1-3 piezocomposites: A comprehensive review. Smart Mat. Struct. 28, 103001. doi:10.1088/1361-665X/ab350a.
Jia, H., Li, H., Lin, B., Hu, Y., Peng, L., Xu, D., Cheng X. (2021). Fine scale 2-2 connectivity PZT/epoxy piezoelectric fiber composite for high frequency ultrasonic application. Sensors Actuators A Phys. 324, 112672. doi:10.1016/j.sna.2021.112672.
Di rito, G., Chiarelli, M. R., and Luciano, B. (2020). Dynamic modelling and experimental characterization of a self-powered structural health-monitoring system with MFC piezoelectric patches. Sensors 20, 950. doi:10.3390/s20040950.
Stepinski, T., Mańka, M., and Martowicz, A. (2017). Interdigital lamb wave transducers for applications in structural health monitoring. NDT E Int. 86, 199–210. doi:10.1016/j.ndteint.2016.10.007.
Yang, C. (2017). Distributed piezoelectric transducers and their applications in structural health monitoring. Dissertation/Doctor’s degree. Siegen: University of Siegen.
Arul, K. T., and Rao, M. S. R. (2020). Ferroelectric properties of flexible PZT composite films. J. Phys. Chem. Solids 146, 109371. doi:10.1016/j.jpcs.2020.109371.
Han, D.-H., and Kang, L.-H. (2020). Piezoelectric properties of paint sensor according to piezoelectric materials. Funct. Compos. Struct. 2, 025002. doi:10.1088/2631-6331/ab90e1.
Sofi, A., Jane Regita, J., Rane, B., and Lau, H. H. (2022). Structural health monitoring using wireless smart sensor network – an overview. Mech. Syst. Signal Process. 163, 108113. doi:10.1016/j.ymssp.2021.108113.
Yang, C., and Fritzen, C. P. (2012). Piezoelectric paint: Characterization for further applications. Smart Mat. Struct. 21, 045017. doi:10.1088/0964-1726/21/4/045017.
Kang, L.-H., and Lee, J.-R. (2014). Piezoelectric paint sensor for impact and vibration monitoring. 7th European workshop on structural health monitoring. Lacité, nantes, France: More info at open access database. Chonbuk: Korea.
Kang, S.-H., and Kang, L.-H. (2017). Development of wireless bird collision monitoring system using 0-3 piezoelectric composite sensor on wind turbine blades. J. Intelligent Material Syst. Struct. 29, 3426–3435. 1045389X17730925. doi:10.1177/1045389x17730925.
Sappati, K. K., and Bhadra, S. (2020). Flexible piezoelectric 0–3 PZT-PDMS thin film for tactile sensing. IEEE Sens. J. 20, 4610–4617. doi:10.1109/JSEN.2020.2965083.
Han, D.-H., and Kang, L.-H. (2018). Piezoelectric characteristics of PNN-PZT/Epoxy paint sensor according to the poling conditions. Sensors Actuators A Phys. 269, 419–426. doi:10.1016/j.sna.2017.12.005.
Giurgiutiu, V. (2015). Published. SHM of aerospace composites—challenges and opportunities. Proc. Compos. Adv. Mater. Expo 2015, 1–15. Dallas, TX: CAMX.
Scarponi, C. (2015). Hemp fiber composites for the design of a Naca cowling for ultra-light aviation. Compos. Part B Eng. 81, 53–63. doi:10.1016/j.compositesb.2015.06.001.
Salamone, S., Bartoli, I., Scalea, F. L. D., and Coccia, S. (2009). Guided-wave health monitoring of aircraft composite panels under changing temperature. J. Intell. Mat. Syst. Struct. 20, 1079–1090. doi:10.1177/1045389X08101634.
Wang, X., Lu, H., Wang, H., and Feng, S. (2010). Synthesis and photophysical properties of rare earth-containing luminescent silicone resin from cooperative molecular design and assembly. J. Non-Crystalline Solids 356, 1581–1586. doi:10.1016/j.jnoncrysol.2010.05.059.
Sundar, U., Banerjee, S., & Cook-C, K. (2018). Piezoelectric and Dielectric Properties of PZT-Epoxy Composite Thick Films. Academic Journal of Polymer Science, 1(5), 555574. DOI: 10.19080/AJOP.2018.01.555574
Burianova, L., Hana, P., Panos, S., Kulek, J., & Tyagur, Y. I. (2000). Piezoelectric, Dielectric and Pyroelectric Properties of 0-3 Ceramic-Polymer Composites. Ferroelectrics, 241(1–4), 59–66.
Eltouby, P., Shyha, I., Li, C., and Jibran, K. H. A. L. I. Q. (2021). Factors affecting the piezoelectric performance of ceramic-polymer composites: A comprehensive review. Ceram. Int. 47, 17813–17825. doi:10.1016/j.ceramint.2021.03.126.
Jiang, S., Shen, Y., Wang, S., Zhi, Y., and Han, B. (2022). Properties of novel 0–3 PZT/silicone resin flexible piezoelectric composites for ultrasonic guided wave sensor applications. Front. Mater. 9:958775. doi: 10.3389/fmats.2022.958775, 1-14.
Nwoye, C. I. (2008). Data Analytical Memory; C-NIKBRAN.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 JOURNAL OF INVENTIVE ENGINEERING AND TECHNOLOGY (JIET)
Copyright 2020-2024. Journal of Inventive Engineering (JIET). All rights reserved. Nigerian Society of Engineers (NSE), Awka Branch.ISSN: 2705-3865
Powered by Myrasoft Systems Ltd.