RESPONSE EVALUATION OF DIELECTRIC PERMITTIVITY OF PZT ROD REINFORCED EPOXY BASED ON VOLUME PERCENT PZT IN COMPOSITE AND RESULTANT COMPOSITE DENSITY

N. E. Nwankwo, C. C. Emekwisia, C. N. Nwambu, J. C. Olelewe, O. H. Aliu, C. I. Nwoye

Abstract


Response evaluation of the dielectric permittivity of PZT-epoxy resin composite was carried out, based on the density of the composite and volume percent PZT in composite. The response was evaluated, using a derived empirical model; K  =  ẞe + Ϧɤ +  ɱ. The core model structure; K – ẞe  ≈  Ϧɤ +  ɱ was the basis on which validity of the model was established, in that both sides of the structure are correspondingly near equal. The model-predicted results are in accordance with previous research on the direct relationship between the dielectric permittivity of PZT-epoxy resin composite and composite density & volume percent PZT in composite. The evaluated correlations between the dielectric permittivity and volume percent PZT in composite & composite density were all > 0.98. The standard error incurred in predicting the dielectric permittivity, relative to the experimental results was 9.83%. This translates to over 90% model confidence level.  The dielectric permittivity per unit volume percent PZT in composite and per unit density of the composite were 13.61 & 13.96 (%)-1 and 187.02 & 191.81 (cc/gm) using experimental and model-predicted results respectively. The overall maximum deviation of the model-predicted dielectric permittivity from experimental results was less than 14%. The derived model will predict the dielectric permittivity, within the experimental results range, on substituting into the model, values of the density of composite and volume percent PZT in composite, providing the boundary conditions are considered.

Keywords: Dielectric permittivity, PZT-rod reinforced epoxy, density, PZT volume percent


Full Text:

PDF

References


Xie, H., Liu, Z., Yao, H., Hao, Y. J., Xie, Z. X., Li, M. H., Cao, S. J., Zhang, J. (2019). Unveiling New Insights into the Mechanism of Ultrahigh Energy Storage in Bismuth Magnesium Titanate Film Capacitors. Journal of Materials Chemistry C, 7(47), 13632. ISSN: 2050-7526.

Yang, D., Gao, J., Shu, L., Liu, Y. X., Yu, J. R., Zhang, Y. Y., Wang, X. P., Zhang, B. P., Li, J. F. (2020). Advanced Strategies for Improving the Performance of Lithium-Ion Batteries: A Review. Journal of Materials Chemistry A, 8(44), 23724. ISSN: 2050-7496.

Kausar, A. (2017). Exploring the Macromolecular World: A Journey through Polymer Science. Journal of Macromolecular Science, Part A, 54(8), 640. ISSN: 1060-1325.

Poonam, K., Sharma, A., Arora, S. K., Tripathi. (2019). Innovations in Energy Storage: A Comprehensive Review of Advanced Technologies. Journal of Energy Storage, 21(801). ISSN: 2352-152X.

Li, H., Zhou, Y., Liu, Y., Li, L., Liu, Y., Wang, Q. (2021). Revolutionary Advances in Materials Science: A Review. Chemical Society Reviews, 50(10), 6369. ISSN: 1460-4744.

Hu, H. L., Zhang, F., Luo, S. B., Chang, W. K., Yue, J. L., Wang, C. H. (2020). Nano Energy Revolution: Current Status and Future Prospects. Nano Energy, 74(104844). ISSN: 2211-2855.

Mirvakili, S. M., Hunter, I. W. (2018). Advances in Materials: A Review. Advanced Materials, 30(170407). ISSN: 0935-9648.

Sheima, Y., Caspari, P., Opris, D. M. (2019). Macromolecular Insights: Rapid Communication and Beyond. Macromolecular Rapid Communications, 40(22), 1900205. ISSN: 1022-1336.

Chen, Y. F., Zhao, H. C., Mao, J., Chirarattananon, P., Helbling, E. F., Hyun, N. P., Clarke, D. R., Wood, R. J. (2019). Nature's Contributions to the Quest for Sustainable Energy. Nature, 575(324). ISSN: 0028-0836.

Zhou, Y. L., Cao, S. T., Wang, J., Zhu, H. Y., Wang, J. C., Yang, S. N., Wang, X., Kong, D. S. (2018). ACS Appl. Mater. Inter.: Exploring New Frontiers in Materials Science and Technology. ACS Applied Materials & Interfaces, 10(51), 44760. ISSN: 1944-8244.

Morales-Masis, M., De Wolf, S., Woods-Robinson, R. J., Ager, J. W. (2017). Adv. Electron. Mater.: Paving the Way for Future Electronics. Advanced Electronic Materials, 3(1600529). ISSN: 2199-160X.

Pan, Z. B., Yao, L. M., Zhai, J. W., Yang, K., Shen, B., Wang, H. T. (2017). ACS Sustainable Chem. Eng.: Sustainable Engineering Solutions for the Future. ACS Sustainable Chemistry & Engineering, 5(6), 4707. ISSN: 2352-152X.

Wang, Y., Hou, Y. F., Deng, Y. (2017). Compos. Sci. Technol.: Exploring the Composite World. Composites Science and Technology, 145(71). ISSN: 0266-3538.

Charaya, H., La, T. G., Rieger, J., Chung. (2019). Adv. Mater. Technol.: Pioneering Advances in Materials Science and Technology. Advanced Materials & Technologies, 4(1), 1900327. ISSN: 2365-709X.

Kim, H., Wilburn, B. R., Castro, E., Rosales, C. G., Chavez, L. A., Tseng, T. B., Lin, Y. R. (2019). J. Compos. Mater.: Shaping the Future of Composite Materials. Journal of Composite Materials, 53(10), 1319. ISSN: 0021-9983.

Zhou, L., Jiang, Y. F. (2019). Mater. Sci. Tech-Lond.: Advancements in Material Science and Technology. Materials Science and Technology, 36(1), 1. ISSN: 0267-0836.

Martins, P., Lopes, A. C., Lanceros-Mendez, S. (2014). Progress in Polymer Science, 39, 683. ISSN: 0079-6700.

Dubal, D. P., Chodankar, N. R., Kim, D. H., Gomez-Romero, P. (2018). Chemical Society Reviews, 47(6), 2065. ISSN: 0306-0012.

Umran, H. M., Wang, F. P., He, Y. S. (2020). IEEE Access, 8, 40413. ISSN: 2169-3536.

Sun, L., Shi, Z. C., Liang, L., Wei, S., Wang, H. L., Dastan, D., Sun, K., Fan, R. H. (2020). Journal of Materials Chemistry C, 8(34), 10257. ISSN: 2050-7526.

Anju, V. P., Narayanankutty, S. K. (2019). Materials Science and Engineering: B, Advanced, 249, 114418. ISSN: 0921-5107.

Vorotiahin, I. S., Poplavko, Y. M., Fomichov, Y. M. (2015). IEEE 35th International Conference on Electronics, Nanotechnology. ISSN: 2374-0353.

Kao, K. C. (2004). "Dielectric Phenomena in Solids With Emphasis on Physical Concepts of Electronic Processes." Elsevier, Academic Press, San Diego, MA.

Zhu, L. (2014). The Journal of Physical Chemistry Letters, 5(21), 3677. ISSN: 1948-7185.

Skvortsov, K. V. (2015). Victor Engineering Physics, 9(1), 7. ISSN: 1806-3691.

Bonardd, S., Moreno-Serna, V., Kortaberria, G., Diaz, D. D., Leiva, A., Saldias, C. (2019). Polymer, 11, 317. ISSN: 0032-3861.

Wang, Q., Zhu, L. (2011). Journal of Polymer Science Part B: Polymer Physics, 49(20), 1421. ISSN: 0887-6266.

Gururaja, T. R., Schulze, W. A., Cross, L. E., Robert, E. N., Bertram, A. A., Wang, Y. J. (1985). "Piezoelectric Composite Materials for Ultrasonic Transducers Applications: Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites." Su-32(4):481-498.

Kwok, K. W., Chan, H. L. W., Choy, C. I. (1995). "Piezoelectric Properties of 1-3 Composites of PZT in P(VDF-TrFE) Copolymer." IEEE, CH3416-507803-1847-1/95.

Pattar, J., Ramesh, D. (2023). "A study of Density Calculation for Composite Materials Aluminium Alloy 6063 Reinforced with TiO2 and B4C Hybrid MMC`s." European Chemical Bulletin 12(special issue 8): 754 – 761.

Nwoye, C. I. (2008). "Data Analytical Memory; C-NIKBRAN."


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JOURNAL OF INVENTIVE ENGINEERING AND TECHNOLOGY (JIET)



Copyright  2020-2024. Journal of Inventive Engineering (JIET). All rights reserved. Nigerian Society of Engineers (NSE), Awka Branch.ISSN: 2705-3865

Powered by Myrasoft Systems Ltd.