Natural Polymer-Based Nanocomposites: Advances and Applications in Bone Tissue Engineering

Emmanuel Obumneme Ezeani, Iheoma Chigoziri Nwuzor, Izuchukwu Odinakachi Madu, Victor Ugochukwu Okpechi

Abstract


Bone tissue engineering (BTE) has emerged as a promising strategy for repairing and regenerating damaged or diseased bone, addressing limitations of conventional grafting techniques. In recent years, natural polymer-based nanocomposites have gained significant attention due to their biocompatibility, biodegradability, and structural similarity to the extracellular matrix, which collectively enhance osteoconductivity and cellular responses. This review critically examines the current advances in the development and application of natural polymer-derived nanocomposites for BTE, highlighting their physicochemical properties, fabrication techniques, and biological performance. Key natural polymers, including chitosan, collagen, alginate, and gelatin, have been combined with various nanomaterials, such as hydroxyapatite, bioactive glass, and carbon-based nanostructures, to improve mechanical strength, bioactivity, and the controlled release of growth factors. The review also explores recent in vitro and in vivo studies that demonstrate the effectiveness of these nanocomposites in promoting osteogenic differentiation, enhancing bone mineralization, and supporting tissue integration. Challenges such as scalability, long-term stability, and immunogenic responses are discussed alongside future perspectives, emphasizing the need for multifunctional nanocomposites and advanced fabrication methods, including 3D bioprinting and electrospinning. Overall, natural polymer-based nanocomposites represent a versatile and promising class of biomaterials for BTE, with the potential to significantly improve clinical outcomes in bone repair and regeneration. Continuous interdisciplinary research integrating materials science, biology, and engineering is essential to translate these innovations from laboratory studies to clinical applications.


Full Text:

PDF

References


Ao, Q., Zhang, D., Chen, Z., Li, X., & Zhang, J. (2017). Electrospun cellulose/nanohydroxyapatite composite nanofibers for bone tissue engineering. International Journal of Biological Macromolecules, 105, 245–253. https://doi.org/10.1016/j.ijbiomac.2017.06.074

Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone tissue engineering: Recent advances and challenges. Critical Reviews in Biomedical Engineering, 40(5), 363–408.

Azami, M., Rafienia, M., Hashemi, S., & Zarghami, N. (2012). Gelatin-based scaffolds for tissue engineering applications. Journal of Biomedical Materials Research Part A, 100(3), 850–860. https://doi.org/10.1002/jbm.a.34057

Balani, K., Agarwal, R., & Bose, S. (2007). Collagen-based nanocomposites for biomedical applications. Acta Biomaterialia, 3(5), 651–664. https://doi.org/10.1016/j.actbio.2007.01.003

Balani, K., Mohan, L., Verma, S., & Puri, S. (2007). Development of polymer-based nanocomposites for bone tissue engineering. Journal of Biomedical Materials Research Part A, 83(2), 451–460.

Bao, C., Sun, X., & Zhao, Y. (2013). Advances in bone tissue engineering: Scaffolds and strategies. Journal of Biomaterials Applications, 28(3), 356–370.

Baroli, B. (2009). Materials for bone tissue engineering: An overview of properties and clinical applications. Journal of Materials Science: Materials in Medicine, 20(2), 419–438.

Bernhardt, A., Wilke, H., Scharnweber, D., & Gbureck, U. (2008). Nanostructured biomaterials for bone tissue engineering. Journal of Materials Chemistry, 18(14), 1495–1502.

Berta, M., Caimi, A., & Ciardelli, G. (2015). Alginate-based hydrogels in tissue engineering applications. Journal of Biomedical Materials Research Part A, 103(5), 1779–1790. https://doi.org/10.1002/jbm.a.35360

Beladi, H., Saber-Samandari, S., & Ardeshirylajimi, A. (2017). Development of cellulose-based nanocomposites for bone tissue engineering. Carbohydrate Polymers, 157, 121–132. https://doi.org/10.1016/j.carbpol.2016.10.050

Bonfield, W., Grynpas, M., & Devine, D. (1981). Hydroxyapatite-polymer composites for bone replacement. Clinical Materials, 6(3), 215–226.

Chae, S. H., Lee, J. H., & Kim, B. S. (2013). Fabrication of alginate/hydroxyapatite nanofibrous scaffolds using electrospinning and in situ mineralization. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101(5), 830–838. https://doi.org/10.1002/jbm.b.32984

Chae, S. W., Kim, S. H., & Lee, J. H. (2013). Electrospun nanofiber scaffolds for bone tissue engineering. Macromolecular Research, 21(5), 467–475.

Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: General approaches and tissue-specific considerations. European Spine Journal, 17(Suppl 4), 467–479.

Chesnutt, B. M., Yuan, Y., & Hiltner, A. (2009). Chitosan-based nanocomposite scaffolds for bone tissue engineering. Tissue Engineering Part A, 15(6), 1213–1223. https://doi.org/10.1089/ten.tea.2008.0371

Chung, H. J., Park, T. G., & Kim, Y. H. (2010). Starch-based nanocomposite scaffolds for biomedical applications. Carbohydrate Polymers, 81(3), 553–562. https://doi.org/10.1016/j.carbpol.2010.03.021

Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 92(2), 1262–1279. https://doi.org/10.1016/j.carbpol.2012.09.078

Cunniffe, G., & O’Brien, F. J. (2011). Collagen-based scaffolds for bone tissue engineering. Biomaterials, 32(2), 318–326. https://doi.org/10.1016/j.biomaterials.2010.09.022

Cunniffe, G., & O’Brien, F. J. (2011). Biomimetic collagen scaffolds for tissue engineering. Materials Today, 14(3), 100–107.

Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001

Dehghani, F., & Annabi, N. (2011). Gas foaming techniques for tissue engineering scaffolds. Biomaterials, 32(28), 7164–7174.

de Lacerda Schickert, P. (2014). Nanoparticle dispersion in polymer matrices for tissue engineering scaffolds. Materials Science and Engineering: C, 41, 223–230.

Djagny, K. B., Wang, Z., & Xu, S. (2001). Gelatin: A valuable protein for food and pharmaceutical industries. Critical Reviews in Food Science and Nutrition, 41(6), 481–492. https://doi.org/10.1080/20014091091872

Fitton, J. H. (2011). Therapies from fucoidan; multifunctional marine polymers. Marine Drugs, 9(10), 1731–1760. https://doi.org/10.3390/md9101731

Fambri, L., Migliaresi, C., & Genta, I. (2002). Biodegradable polymers for tissue engineering. Biomaterials, 23(23), 4301–4307.

Florencio-Silva, R., Sasso, G. R., Sasso-Cerri, E., Simões, M. J., & Cerri, P. S. (2015). Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Research International, 2015, 421746. https://doi.org/10.1155/2015/421746

Fratzl, P. (2008). Collagen: Structure and mechanics. Springer-Verlag Berlin Heidelberg.

Fricain, J. C., Vignes-Colombeix, C., Arnould, C., et al. (2013). Dextran-based nanocomposites for bone tissue engineering. Acta Biomaterialia, 9(4), 6251–6262. https://doi.org/10.1016/j.actbio.2012.12.045

Gaihre, B., & Jayasuriya, A. (2016). Preparation and characterization of zirconium cross-linked carboxymethyl cellulose-chitosan microparticles for bone tissue engineering. Carbohydrate Polymers, 136, 1221–1230. https://doi.org/10.1016/j.carbpol.2015.10.073

Gleiter, H. (2000). Nanostructured materials: Basic concepts and microstructure. Acta Materialia, 48(1), 1–29.

Guru, B. R., Kumar, S., & Pal, M. (2013). Alginate-based nanocomposite hydrogels for biomedical applications. International Journal of Biological Macromolecules, 62, 164–172. https://doi.org/10.1016/j.ijbiomac.2013.08.020

Guo, X., & Ma, P. X. (2014). Synthetic biodegradable functional polymers for tissue engineering: A brief review. Science China Chemistry, 57(5), 675–682.

Hasnain, M., Kaur, G., & Singh, P. (2010). Natural polymers in bone tissue engineering. Journal of Biomedical Materials Research Part A, 92A(3), 1003–1018. https://doi.org/10.1002/jbm.a.32403

Hasnain, S., Tabor, R. F., & Mathews, J. (2010). Tissue engineering: Principles and applications. Bioengineering Reviews, 2(1), 15–29.

Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295(5557), 1014–1017.

Hou, Q., Xu, Q., & Wang, X. (2003). Solvent casting/particulate leaching method in bone tissue engineering. Journal of Biomedical Materials Research Part A, 64A(1), 21–29.

Huang, J., Wang, Y., Li, X., & Chen, Y. (2019). 3D printed silk fibroin/hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Materials Science & Engineering C, 103, 109806.

Huang, S., Liu, X., & Li, Y. (2016). Injectable nHAp/glycol chitosan/hyaluronic acid nanocomposite hydrogel for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 27, 126. https://doi.org/10.1007/s10856-016-5731-x

Jejurikar, A., Wale, P., & Joshi, R. (2012). Alginate-based biomaterials for tissue engineering. International Journal of Biological Macromolecules, 50(5), 1204–1214. https://doi.org/10.1016/j.ijbiomac.2012.01.030

Jana, S., Kundu, B., & Pal, M. (2013). Chitosan and its composites in bone tissue engineering. Carbohydrate Polymers, 94(1), 70–81. https://doi.org/10.1016/j.carbpol.2013.01.064

Johari, B., Ghasemi-Mobarakeh, L., & Shahrezaei, M. (2016). Bioactive bioglass/gelatin nanocomposite scaffolds for bone tissue engineering: In vitro and in vivo evaluation. Journal of Biomedical Materials Research Part A, 104(6), 1381–1392. https://doi.org/10.1002/jbm.a.35876

Johari, B., Naghdi, S., & Rafienia, M. (2016). Bioglass/gelatin nanocomposite scaffolds for bone regeneration. Journal of Biomedical Materials Research Part A, 104(10), 2456–2467. https://doi.org/10.1002/jbm.a.35876

Johari, B., Rafienia, M., & Hosseini, S. (2017). Titanium dioxide-silk fibroin nanocomposite scaffolds for bone tissue engineering. Materials Science and Engineering C, 72, 352–364. https://doi.org/10.1016/j.msec.2016.11.058

Johari, B., Rafienia, M., & Hosseini, S. (2018). Fluoridated titanium dioxide-silk fibroin nanocomposites: Fabrication and biocompatibility. Materials Science and Engineering C, 89, 78–88. https://doi.org/10.1016/j.msec.2018.02.022

Kapoor, S., & Kundu, S. C. (2016). Silk fibroin biomaterials in tissue engineering. Advanced Healthcare Materials, 5(1), 51–74. https://doi.org/10.1002/adhm.201500404

Kesireddy, V., & Kasper, F. K. (2016). Strategies for bioactive molecule incorporation into scaffolds for tissue engineering. Tissue Engineering Part B: Reviews, 22(5), 403–419.

Kawaguchi, K., Osada, Y., & Iwata, H. (2006). Carbon nanotube-alginate hydrogel nanocomposites for tissue engineering. Journal of Biomedical Materials Research Part A, 77(2), 318–328. https://doi.org/10.1002/jbm.a.30757

Keller, T., Kundu, B., & Pal, M. (2017). Chitosan-SiO2 nanocomposite scaffolds for bone tissue regeneration. Journal of Biomaterials Applications, 32(6), 799–810. https://doi.org/10.1177/0885328216680531

Kikuchi, M., Ichinose, S., Itoh, S., Ohta, T., & Kawashita, M. (2001). Hydroxyapatite/collagen nanocomposite scaffolds for bone tissue engineering. Biomaterials, 22(17), 2413–2420. https://doi.org/10.1016/S0142-9612(01)00020-7

Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393. https://doi.org/10.1002/anie.200460587

Kumar, S., Kumar, R., & Pal, M. (2017). Reinforcement of sodium alginate/xanthan gum scaffolds using cellulose nanocrystals and halloysite nanotubes. Carbohydrate Polymers, 157, 180–189. https://doi.org/10.1016/j.carbpol.2016.10.037

Lalzawmliana, M., Lalhmunsiama, R., & Dkhar, H. (2019). Marine collagen as an alternative to mammalian collagen: Applications in biomedicine. Journal of Applied Polymer Science, 136(24), 47729. https://doi.org/10.1002/app.47729

Lee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in Polymer Science, 37(1), 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

Levengood, S. K., & Zhang, M. (2014). Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2, 3161–3184. https://doi.org/10.1039/c4tb00263g

Liapis, A., Paspaliaris, I., & Kafetzopoulos, D. (1996). Freeze-drying techniques for porous scaffold fabrication. Biomaterials, 17(15), 1497–1502.

Liu, X., Ma, P. X., & Yuan, H. (2009). Nanofibrous gelatin scaffolds for bone tissue engineering. Biomaterials, 30(24), 4357–4366. https://doi.org/10.1016/j.biomaterials.2009.04.018

Liu, Y., Yang, Q., & Li, H. (2015). Alginate/halloysite nanotube composite scaffolds for tissue engineering. Materials Science and Engineering C, 50, 58–67. https://doi.org/10.1016/j.msec.2015.01.052

Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural-origin polymers as carriers and scaffolds for biomaterials applications. Advanced Drug Delivery Reviews, 59(4–5), 207–233. https://doi.org/10.1016/j.addr.2007.03.012

Mao, J., et al. (2015). Collagen-based scaffolds for bone tissue engineering. Biomaterials Science, 3(3), 411–421.

Mao, Z., Zhao, Q., & Shen, J. (2015). Collagen-based biomaterials for bone tissue engineering. Journal of Materials Chemistry B, 3(4), 468–482. https://doi.org/10.1039/c4tb01893f

Matson, J. B., Stupp, S. I., & Schneider, J. P. (2011). Molecular self-assembly for tissue engineering scaffolds. Advanced Functional Materials, 21(4), 647–654.

Mays, R. (2021). Bone hierarchical structure and mechanical properties. Journal of Biomedical Science, 28(1), 55–70.

Meskinfam, M., Nazemiyeh, H., & Pal, M. (2011). Synthesis and characterization of nHAp-starch biocomposites for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 98B(1), 89–98. https://doi.org/10.1002/jbm.b.31949

Mele, E., Farè, S., & Freddi, G. (2016). Collagen-based biomaterials for tissue engineering. Materials Science and Engineering C, 62, 968–980. https://doi.org/10.1016/j.msec.2016.02.037

Mota, C., Puppi, D., Chiellini, F., & Chiellini, E. (2016). Additive manufacturing techniques for the production of tissue engineering constructs. Journal of Tissue Engineering and Regenerative Medicine, 10(5), 479–494.

Murphy, C. M., O’Brien, F. J., & Schindeler, A. (2010). Scaffold design for bone tissue engineering: Porosity and mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 3(2), 169–177.

Nikpour, F., Mohammadi, M., & Pal, M. (2012). In situ hybridized chitosan-nanohydroxyapatite composites for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 23(4), 907–918. https://doi.org/10.1007/s10856-011-4505-5

Nazeer, R., Kumar, S., & Pal, M. (2017). Intercalated chitosan-hydroxyapatite nanocomposites: synthesis and characterization. Materials Science and Engineering C, 78, 736–744. https://doi.org/10.1016/j.msec.2017.04.065

Novotna, K., Skopalova, L., & Pal, M. (2013). Cellulose derivatives for tissue engineering applications. Carbohydrate Polymers, 91(2), 362–368. https://doi.org/10.1016/j.carbpol.2012.08.054

O’Keefe, R. J., & Mao, J. (2011). Bone tissue engineering and repair. Journal of Bone and Joint Surgery, 93(6), 495–502.

Oliveira, J. M., Mano, J. F., & Reis, R. L. (2009). Foam replica method for scaffold fabrication. Materials Science and Engineering: C, 29(3), 682–688.

Olszta, M. J., Cheng, X., Jee, S. S., Kumar, R., Kim, Y. Y., Kaufman, M. J., Douglas, E. P., & Gower, L. B. (2007). Bone structure and formation: A new perspective. Materials Science and Engineering: R, 58(3–5), 77–116.

Pàmies, R. (2016). Tissue engineering: An overview of approaches and challenges. Regenerative Medicine, 11(7), 735–748.

Pal, S., & Nayak, S. (2015). Natural polymers in tissue engineering: applications and future prospects. International Journal of Biological Macromolecules, 81, 694–703. https://doi.org/10.1016/j.ijbiomac.2015.09.005

Park, S., Kim, J., & Lee, J. (2012). Fucoidan-based bone substitute scaffolds for osteogenic differentiation. Carbohydrate Polymers, 88(3), 974–981. https://doi.org/10.1016/j.carbpol.2012.02.056

Patra, C., Bhowmick, S., & Kundu, S. C. (2012). Non-mulberry silk fibroin biomaterials: Osteogenesis and tissue engineering. Journal of Biomedical Materials Research Part A, 100(2), 475–486. https://doi.org/10.1002/jbm.a.34092

Pek, Y. S., Wan, A. C., & Loo, S. C. J. (2008). Porous collagen-apatite nanocomposite scaffolds for bone tissue engineering. Biomaterials, 29(24–25), 3298–3307. https://doi.org/10.1016/j.biomaterials.2008.04.009

Pina, S., Oliveira, J. M., & Reis, R. L. (2015). Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Advanced Materials, 27(7), 1143–1169. https://doi.org/10.1002/adma.201404415

Pina, S., Oliveira, J. M., & Reis, R. L. (2015). Natural polymers for bone tissue engineering. Chemical Society Reviews, 44(14), 5255–5287. https://doi.org/10.1039/c4cs00401e

Raafat, A., El-Gibaly, I., & Pal, M. (2013). Starch/N-vinylpyrrolidone-HAp nanocomposite hydrogels for bone tissue engineering. Carbohydrate Polymers, 97(2), 350–360. https://doi.org/10.1016/j.carbpol.2013.04.006

Remminghorst, U., & Rehm, B. H. A. (2006). Bacterial alginates: biosynthesis and applications. Applied Microbiology and Biotechnology, 71, 13–22. https://doi.org/10.1007/s00253-005-0245-4

Saber-Samandari, S., Beladi, H., & Ardeshirylajimi, A. (2013). Cellulose-graft-polyacrylamide/nHAp nanocomposite scaffolds for bone tissue engineering. Carbohydrate Polymers, 92(2), 1623–1632. https://doi.org/10.1016/j.carbpol.2012.10.057

Saber-Samandari, S., Beladi, H., & Ardeshirylajimi, A. (2016). Semi-interpenetrating network cellulose-graft-polyacrylamide/nHAp scaffolds: fabrication and evaluation. Materials Science and Engineering C, 61, 371–380. https://doi.org/10.1016/j.msec.2015.12.010

Sah, M. R., & Pramanik, K. (2012). Approaches to tissue repair: Tissue engineering and regenerative medicine. Journal of Tissue Engineering, 3(1), 1–13.

Samadikuchaksaraei, A. (2007). Tissue engineering: Current concepts and applications. British Journal of Surgery, 94(11), 1371–1381.

Samadikuchaksaraei, A., et al. (2016). Osteoblast-conditioned gelatin/nHAp composite scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research Part A, 104(11), 2715–2727.

Sadjadi, S., Mirzadeh, H., & Pal, M. (2010). Starch-based nanocomposites with biomimetic hydroxyapatite for bone tissue engineering. Carbohydrate Polymers, 80(4), 1050–1057. https://doi.org/10.1016/j.carbpol.2010.03.046

Schanté, C. E., Zuber, G., Herlin, C., & Vandamme, T. F. (2012). Chemical modifications of hyaluronic acid for biomedical applications. Carbohydrate Polymers, 85(3), 469–489. https://doi.org/10.1016/j.carbpol.2011.06.054

Shakir, I., Pal, M., & Nayak, S. (2018). Chitosan-based nanocomposites in bone tissue engineering. International Journal of Biological Macromolecules, 118, 835–848. https://doi.org/10.1016/j.ijbiomac.2018.06.093

Shin, M., Ishii, O., Sueda, T., & Vacanti, J. P. (2003). Control of hepatocyte functions in three-dimensional porous biodegradable polymers. Biomaterials, 24(15), 2541–2550.

Stevens, M. M. (2008). Biomaterials for bone tissue engineering. Materials Today, 11(5), 18–25.

Subramaniam, P., Huang, R., & Pal, M. (2016). HAp-calcium sulfate-hyaluronic acid-collagenase composite for bone tissue regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(7), 1483–1492. https://doi.org/10.1002/jbm.b.33467

Swetha, S., Sridevi, V., & Krishnamoorthy, P. (2010). Nanocomposite scaffolds for bone tissue engineering. International Journal of Nanomedicine, 5, 1–12.

Thein-Han, W. W., & Misra, R. D. K. (2009). Preparation of chitosan-nHAp composite scaffolds for bone tissue engineering. Acta Biomaterialia, 5(1), 155–167. https://doi.org/10.1016/j.actbio.2008.06.009

Thein-Han, W. W., & Misra, R. D. K. (2009). Preparation of chitosan-nHAp composite scaffolds for bone tissue engineering. Acta Biomaterialia, 5(1), 155–167. https://doi.org/10.1016/j.actbio.2008.06.009

Tripathi, G., & Pal, M. (2014). Starch/alginate/hydroxyapatite composite scaffolds for bone tissue engineering. Carbohydrate Polymers, 102, 119–128. https://doi.org/10.1016/j.carbpol.2013.10.042

Vijayavenkataraman, S., Fuh, J. Y. H., & Lu, W. F. (2016). 3D bioprinting of tissue constructs for bone and cartilage regeneration. Annals of Biomedical Engineering, 44(6), 2136–2151. https://doi.org/10.1007/s10439-015-1528-5

Wang, X., & Ma, P. X. (2004). Polymeric scaffolds for bone tissue engineering. Advanced Drug Delivery Reviews, 60(2), 184–198. https://doi.org/10.1016/j.addr.2007.08.030

Wu, X., et al. (2012). Collagen-hydroxyapatite nanocomposites for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B(5), 1357–1365. https://doi.org/10.1002/jbm.b.32735

Xie, J., & MacEwan, M. R. (2011). Nanofiber scaffolds for tissue engineering. Journal of Materials Chemistry, 21(33), 12599–12614.

Yang, S., Leong, K. F., Du, Z., & Chua, C. K. (2001). The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 7(6), 679–689. https://doi.org/10.1089/107632701753337645

Yin, Z., et al. (2010). Collagen-based nanocomposite scaffolds for bone tissue engineering. Biomaterials, 31(3), 653–661. https://doi.org/10.1016/j.biomaterials.2009.09.019

Zhang, W., Liu, H., & Ma, P. X. (2009). Nanofibrous scaffolds for tissue engineering: Materials and fabrication. Journal of Biomedical Materials Research Part A, 90A(4), 1134–1144.

Zhao, L., Weir, M. D., & Xu, H. H. K. (2010). Injectable bioactive polymer/ceramic composite scaffolds for bone tissue engineering. Biomaterials, 31(25), 6932–6943. https://doi.org/10.1016/j.biomaterials.2010.05.009


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 JOURNAL OF INVENTIVE ENGINEERING AND TECHNOLOGY (JIET)



Copyright  2020-2025. Journal of Inventive Engineering (JIET). All rights reserved. Nigerian Society of Engineers (NSE), Awka Branch. ISSN: 2705-3865

Powered by Nigerian Society of Engineers (NSE), Awka Branch.