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ABSTRACT: The present work is aimed at deriving from the first principle the strain-displacement relations, 

and to develop specific stability equations for five (5) plate types using polynomial displacement shape 
functions for large deflection analysis of thin rectangular plates. This was done by looking at the deformation 

of a cube and formulating the new nonlinear strain-displacement relations, and substituting the new relations 

together with stress-strain relations into the total potential energy functional equation to arrive at the general 

stress parameter equation. From this equation, the general mathematical model for stability analysis of thin 

rectangular plates was formulated. The polynomial displacement shape function for each of the five plate 

types considered here was evaluated to obtain the individual stiffness. The obtained stiffnesses were 

substituted into the general stability model and evaluated to obtain specific mathematical models for the five 

plate types. The observed numerical values indicate that the frequency increases as the displacement 

increases and decreases as the aspect ratio increases. This conforms with existing works in literature and the 

behavior of plates. Therefore, the conclusion is that these newly formulated mathematical models are 

adequate for these analyses. 
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I. INTRODUCTION 

 

A mathematical model is a description of a system using mathematical concepts and language. The process of 
developing a mathematical model is termed mathematical modeling. Von Karmon’s large deflection equations 

proposed in 1910 are the fundamental equations or models of large deflection analyses of the plates. These 

equations involved the use of Airy’s stress functions. These equations are coupled, non-linear second-degree 

partial differential equations of fourth order each (Elsheikh & Wang, 2005). Chajes (1974) and Lee (1977) 

have asserted that a closed-form solution to these equations is not possible. Levy (1942) offered the most 

acclaimed exact solution to these equations. Levy applied his approach to a plate simply supported on all 

edges.  Several scholars have made attempts to profer solution to the problem of large deflection of thin plates 

among whom are Stein (1984), Bloom and Coffin (2001), Byklum and Amdahl (2002), and Tanriöver and 

Senocak (2004). The major challenge of large deflection is the determination of the middle surface 

displacement. Because beyond the limit of small deflection theory which is based on Kirchoff analysis, the 

middle surface displacements are no longer negligible. Timoshenko (1959), GhannadPour and Alinia (2006), 

and Shufrin, Rabinovitch, and Eisenberger (2008), all attempted this problem by assuming the middle surface 
displacement. Civalek and Yavas (2006) studied statically large deflection of rectangular plates on two 

parameter-elastic foundations by using the discrete singular convolution (DSC) method on Von Karman's 

large deflection theory. Their work indicated that increasing the applied loads would increase the 

displacements. Katsikadelis & Babouskos (2007) used the boundary element method (BEM) based on a 

variational method for post-buckling analysis of thin elastic plates of arbitrary shape under general boundary 

conditions. It was concluded from their work that by specifying appropriately the shape of the initial 

deflection, the bearing capacity can be increased. Oguaghamba (2015), and Oguaghamba, et al (2015), 

determined the stress functions used in their works and evaluated the buckling and post-buckling stress using 

the principle of virtual work. Enem (2018) determined the stress functions in his work on the pure bending of 

thin plates with large deflection. Their attempt covered several plate types, unlike previous works that were 

limited to the SSSS plate only. However, the approaches were still based on solving the two von Karman 
equations. Elsami (2018) studied large deflection of plates and stated that von-Karman type nonlinear strain-

displacement relations are mostly used in large deflection analysis of rectangular plates. Most of the research 

works in this area have been around von Karman large deflection equations, and the majority now are based 

on the use of numerical methods mostly finite element methods. 

 

Based on the observed challenges and the need to proffer a simple theoretical analysis approach to large 

deflection of thin rectangular plates devoid of Airy’s stress functions. Ibearugbulem et al (2020) formulated a 

new postbuckling equation and applied it to a plate simply supported all-round (SSSS). The present work aims 

to formulate the strain-displacement relations from the first principle and apply it to formulate specific new 

mathematical models for predicting the buckling and postbuckling load of five plate types other than SSSS 

plate using polynomial displacement shape functions. This will provide simple equations and data for analysts 

and designers of lightweight plated structures easily. 
 

 

  

II. MATERIALS AND METHODS 

 
The materials used are the formulated displacement shape function for six plate types as shown in Table 1. 

The methodology used is presented in the following section. 

  

1. STRAIN-DISPLACEMENT FORMULATION AND THE GENERAL STABILITY  

 EQUATION OF A PLATE UNDER LARGE DEFLECTION 

  

A.  MIDDLE SURFACE DISPLACEMENT 

The major assumption of the analysis of plates with large deflection is that the middle surface displacements 

are not zeros. We need to understand the nature of these displacements to determine their values. Consider a 

cube where point B of line A-B moved to point B’ as shown in Fig.1. 
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Fig.1: Large displacement of a cube 

  

 Large displacements of the sides of the tiny cube are shown in Fig. 1. Some of the notations on the figure are 

defined as follows: 
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Approximating Equation (3c) gives: 

  
The squares of small quantities, du/dx and dv/dy are too small that they can be neglected without grossly 

affecting the result. Thus, Equation (3d) becomes: 

  
Deformation in length, Δx is obtained by subtracting L1 from L2. That is: 

  

  

  
Similarly, 

  

For thin plates, the engineering vertical shear strains, xz, and yz are zeros. That is: 

  

  
Solving Equations (6a) and (6b) for u and v respectively gives: 

 

 

  

Where  and  are constants of integration and represent the middle surface displacements. 

Substituting Equations (7a) and (7b) respectively into Equations (5a) and (5b) gives: 

  

  

In notation (symbolic) form, Equations (8a) and (8b) can respectively be rewritten as: 

  

  

Where: 
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Equations (8g) and (8h) are the membrane in-plane displacements and are not functions of plate thickness. 

These displacements are assumed to be zero when the plate is under small displacement. Thus, minimizing 
them with respect to dx and dy respectively results to: 

 

 

 

However, if the displacement is not small (that is large displacement) then Equations (9a) and (9b) are 

rewritten by replacing ”minus half” with another constant c1. That is: 

 

 

Note that whenever c1 becomes exactly equal to “minus one” the plate goes into small displacement. 
Substituting Equations (10a) and (10b) respectively into Equations (8a) and (8) results to: 

 

 

  

B.      MEMBRANE STRAINS 

Membrane strains are strains developed in a plate when it resists load by membrane action. The normal strain 

in the x direction is the ratio of change in length to the original length. That is: 

 

 

Similarly, the engineering in-plane shear strain is defined as: 

 
Substituting Equations (11a) and (11b) respectively into Equations (12a) and (12b) results to: 
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Substituting Equations (11a) and (11b) into Equations (12c) results to: 

  

 

That is: 

 
Minimizing Equation (13a) with respect to w gives: 

 
Factorizing Equation (14) gives: 

 
Two possibilities for a second derivative to be zero are for the number or function differentiated to be constant 

or zero. Assume that the function of Equation (15) is equal to zero. That is: 

 
The maximum strain occurs at the outermost fiber where z = t/2. Thus: 

 
Assuming here that the maximum strain occurs for a stable plate when t/w is not less than unity. Assume that 

the limiting value for t/w is 1. Thus: 

 
Substituting Equation (18) into Equation (13c) gives: 

 

 
  

C.  NONLINEAR IN-PLANE DISPLACEMENTS 

Nonlinear in-plane displacements, ( , ), are displacements that occur at the 

inelastic range of a structural material when subject to external in-plane force. Substituting Equation (19) into 

Equations (11a) and (11b) gives 
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D.    NONLINEAR STRAIN-DISPLACEMENT RELATIONS 

 

Nonlinear strain-displacement relations are expressions for strains at the inelastic range in terms of 

displacements. Substituting Equation (18) into Equations (13a), (13b), and (13d) results to: 

 

 

 

 

Equations (22) to (24) is the formulated strain-displacement relations. Next is to use them for stability 

equation formulation. 

  

E.   TOTAL POTENTIAL ENERGY FUNCTIONAL 

 

The total potential energy,  of a thin rectangular plate is given (Ibearugbulem, 2017) 

  
And, the constitutive Relations are given as: 

  

  

  
The Equations (26) will be substituted into Equation (25)  

  
Simplifying yields 

  

Substituting Equations (22), (23), and (24) into Equation (27) yields 
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Expanding the square brackets yields Equation (27b) 

  

Opening up the square brackets by multiplying out term yields  

  

Collecting like terms yields Equation (27d) 
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Canceling out yields, Equation (27d) reduces to Equation (27e) 

 

 
After integrating one Equation (27e) with respect to z we have Equation (28) 

  

But  

       
Substituting Equation (29) into Equation (28) yields 

  

In non-dimensional parameters,  

  
Substituting Equation (31) into Equation (30) gives                                                                           

  

 Where aspect ratio      
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The approximate and non-intractable solution of a rectangular thin plate in the polynomial form is given 

(Ibearubulem, 2017). 

  

  
And at the point of maximum deflection is written as  

  

  
Substitute Equation (46) into Equation (32) yields 

  

Minimizing Equation (48) with respect to A yields 

  

Multiply Equation (56a) by   

  

Dividing all through by D yields 

  
Equation (51) can be rewritten as; 
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Where 

  

                    

  

  

  

  

  
Where subscripts b and m represent bending and membrane component respectively. 

From Equation (52) 

  
where 

  

  
Where  are the total bending stiffness and total membrane stiffness respectively and  is the 

external buckling load stiffness. 

Substitute Equation (29) into Equation (54) yields 

  

  
Where              

  

  
Equation (59) is the Postbuckling Load Parameter. 

 
From Equation (59) 

  
Therefore, simplifying Equations (60) becomes 

  

  
Where 

 is the postbuckling stress coefficient 
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Equations 61 and 62 are the general stability equations for large deflection analysis of a thin 

rectangular plate for any plate type in terms of stress and load respectively. This equation replaced the long-

standing von Karman large deflection equations which have posed a lot of difficulties in proffering solutions 

to them because they involved stress functions and are coupled nonlinear partial differential equations. 

  

F. NUMERICAL APPLICATION TO FIVE PLATES TYPES USING POLYNOMIAL 

 DISPLACEMENT SHAPE FUNCTIONS. 

The polynomial displacement shape profiles, h, are presented in Table 1 for the five plate types under 

consideration. These profiles were evaluated based on equations 53a-f to obtain the plates’ stiffness values (

 as presented in Table 2. 

Table 1: Plate types, shapes Parameters for Six Plate Types 
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These individual plate stiffnesses were thereafter substituted into equations 55a and 55b to obtain the total 

bending stiffness, , and the membrane stiffness,  equations respectively of the 

various plate types as presented in Tables 3 and 4 respectively. Substituting the total bending stiffness 

equation and the total membrane stiffness equation for each of the plate types into equations 61 and 62 yields 

the mathematical models for stability analysis of the various plate types under consideration for any aspect 

ratio as presented in Table 5. 

 

 

IV RESULTS AND DISCUSSION 
 

The various results obtained from this study are presented in the various tables as stated in the preceding 

section. 

  

 Table 2: Summary of Stiffness Values for the Six Plate Types 

Plate 

BCs 

       

CCCC 

0.0012698 0.0003628 0.001269841 0.000000002 0.00000000

05 

0.000000002

4 

0.00003023

43 

CSSS 

0.0361905 0.0416327 0.08857143 0.000034098 0.00000457 0.000044925 0.00366213

15 

CSCS 

0.0076190 0.0092517 0.039365079 0.000001645 0.00000026 0.000001925 0.00077097

51 

CCSS 

0.0135714 0.0073469 0.013571429 0.000001179 0.00000015 0.000001179 0.00064625

85 

CCCS 

0.0028571 0.0016327 0.006031746 0.000000057 0.00000000

86 

0.000000050

5 

0.00013605

44 

  

Table 3:  Total Bending Stiffness  Equation for Six Plate Types  

Plate Type 

 

CCCC 

 
CSSS 

 
CSCS 

 
CCSS 

 
CCCS 
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Table 4: Total Membrane Stiffness  Equation for Six Plate Types  

Plate Type 

 

CCCC 

 
CSSS 

 
CSCS 

 
CCSS 

 
CCCS 

 

  

Table 5: Buckling/Postbuckling Load and Stress Equations for the Various Plate Types 

 

  

 When the aspect ratio,  , is equal to unity, that is a square plate. Then the mathematical models in Table 

5 reduce to those presented in Table 6. 
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Table 6: Buckling/Postbuckling Load and Stress Equations for the Various Square Plate Types  

 

The new mathematical models in Table 5 are simple to use both for analysis and design. They showed both 

the expressions for buckling and postbuckling load and stress for the various plate types. Fig. 1 shows the 

relationship between the stress parameter and the ratio of displacement to the thickness of the plate from 

Equation 1. And the numerical values obtained from equations in Table 6 for buckling and postbuckling loads 

are presented in Table 7. 
These values will help in analyzing the validity of these new mathematical models. A look at the models 

indicated that only three parameters are unknown, (ie Displacement, w; plate thickness, t; and the buckling 

and postbuckling load,  ). Knowing any two of the variables the other can be evaluated easily.  

 

Fig. 1: Stress Parameter ( ) vs Displacement to Thickness Ratio (Ƨ) 
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Table 7: Numerical Values of Buckling and Postbuckling Coefficient, , of Rectangular Plates for 

Various Square Plate Types.  

 

w/t 

, 

 
 CCCC CSSS CSCS CCSS CCCS 

0 108.000 56.805 84.941 64.737 89.333 

0.25 109.190 58.285 86.245 66.317 90.740 

0.5 112.760 62.726 90.158 71.059 94.961 

0.75 118.710 70.128 96.678 78.962 101.995 

1 127.041 80.491 105.807 90.026 111.843 

1.25 137.751 93.814 117.544 104.251 124.505 

1.5 150.841 110.098 131.889 121.638 139.980 

1.75 166.312 129.343 148.843 142.185 158.269 

2 184.162 151.549 168.404 165.894 179.372 

2.25 204.393 176.715 190.574 192.764 203.288 

2.5 227.004 204.842 215.352 222.795 230.018 

2.75 251.994 235.930 242.738 255.987 259.562 

3 279.365 269.979 272.733 292.341 291.919 

3.25 309.116 306.988 305.336 331.855 327.091 

3.5 341.247 346.958 340.547 374.531 365.075 

3.75 375.758 389.889 378.366 420.368 405.874 

4 412.649 435.781 418.793 469.366 449.486 

4.25 451.921 484.633 461.829 521.525 495.912 

4.5 493.572 536.446 507.473 576.846 545.152 

4.75 537.603 591.220 555.725 635.327 597.205 

5 584.015 648.954 606.585 696.970 652.072 

 
Both Fig. 1 and Table 7 indicated a gradual increase in postbuckling values of a plate as the displacement-to-

thickness ratio increased due to the applied load. This shows that a thin rectangular plate possessed additional 

strength beyond the critical load or yield point. This property of a thin plate is beneficial in aerospace and 

naval architecture industries where lightweight structures with higher strength are required for designs. The 

implication also is that the plate may not fail easily based on geometric conditions but rather it will fail based 

on material weakness. This is in line with various assertions in literature (Chajes, 1974, Ventsel and 

Kruamerther, 2001, Oguaghamba, 2015). Since their critical values correspond with those in the literature 

(Ibearugbulem, 2014; Adah, 2016, Onwuka, et al 2016, Iwuoha, 2016). These results fulfilled the aim of this 

work which is to formulate adequate and simple specific mathematical models for stability analysis of five 

thin isotropic rectangular plate types under large deflection. 

 

IV. CONCLUSION 

The present work has formulated the nonlinear strain-displacement relations from the first principle and 
specific mathematical models for stability analysis of thin isotropic rectangular plates under large deflection 

for five plate types namely, CCCC, CSSS, CSCS, CCSS, and CCCS as presented in Table 5. The numerical 

results obtained from these models for the various plate types indicated that the formulated models are 

adequate for the stability analysis of a thin isotropic plate with large deflection. The simplicity of the 

formulated models is another plus to this work, as this will offer quick results in analysis and design. 

Therefore, the conclusion is that these newly formulated mathematical models are adequate for the stability 

analysis of thin isotropic rectangular plates for any plate type and a better alternative to the long-standing von 

Karmon equations that are limited in application due to the complexity of getting an exact solution. 
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