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ABSTRACT: Effective air traffic management is crucial for ensuring safety, reducing delays, and optimizing
operational efficiency in aviation. This study presents the development of an Airplane Trajectory Prediction
(ATP) model for Air Traffic Management System (ATMS) using a Support Vector Machine (SVM) algorithm.
The aim of the study is to provide real-time trajectory monitoring and anomaly detection while classifying flight
behaviours into three categories: normal flight, in-flight delay, and high-speed. A secondary dataset of aircraft
trajectories was pre-processed using methods including mean imputation and Z-normalization as part of the
approach. Flight behaviours were analysed using a multi-class SVM classifier, and hyperparameter adjustment
was done to get the best prediction accuracy. The result showed how well the model performed in correctly
predicting and categorizing flight paths. The ATP model provided substantial advantages for operational and
safety decision-making by successfully detecting possible abnormalities and diverging from intended routes with
89% success rate. To further increase prediction accuracy and scalability, future studies might investigate the
use of more advanced deep learning models and bigger datasets.
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I. INTRODUCTION

In the ever-evolving realm of aviation, where safety, efficiency, and precision reign supreme, emerges the Flight
Surveillance and Tracking System (FSTS) as a formidable guardian of the skies (Domenic et al., 2012). As
aircrafts embark on their journeys, this technological marvel assumes the role of a communication, offering a
comprehensive solution to monitor, track, and masterfully manage their every maneuver during flight operations
(Plass et al., 2015). Powered by cutting-edge technology and seamlessly orchestrated data exchange, the FSTS
not only bolsters safety and situational awareness but propels operational efficiency, ushering in a new epoch of
aviation excellence (Anwar et al., 2019).

Imagine a world where each aircraft's trajectory, location, and operational status are not merely comprehended
but instantaneously accessible in real-time. This forms the bedrock upon which the flight surveillance and
tracking system is meticulously constructed (Edward et al., 2007). Through an intricate web of sensors,
communication channels, and data analytics, this system crafts a vivid canvas of the skies. The beneficiaries of
this intricate tapestry are air traffic controllers, aviation experts, and stakeholders who wield this real-time
information to make informed decisions that safeguard lives and improve operations of airplane (Guvenc et al.,
2018).

According to Kaeye et al. (2018).The objective of the FSTS is to furnish precise and timely information
concerning aircraft movements throughout their flights. This goal is achieved by seamlessly integrating a fusion
of technologies including radar, satellite navigation, and data communication (Alexander et al., 2015). The
resulting panorama extends far beyond solitary points of reference, intertwining effortlessly with ground control

http://www.jiengtech.com


Journal of Inventive Engineering and Technology (JIET) November/December 2024

w w w . j i e n g t e c h . c o m . A l l R i g h t s R e s e r v e d . 2 0 2 4 Page 10
10

centres, air traffic management systems, and even the aircraft themselves. This harmonious flow of information
meticulously moulds the trajectory of each flight.
In the rapidly evolving realm of aviation, the Flight Surveillance and Tracking System (FSTS) stands as a
testament to technological progress, promising a quantum leap in both safety and efficiency (Prevot, 2005). Yet,
this innovative advancement does not traverse the skies unburdened by challenges. Some of the observed
challenges are data privacy and security, cyber threats exposure, standardization and complexity, operational
proficiency and reliance to the communication infrastructure. The intricate integration of cutting-edge
technology and the intricacies of real-time data exchange bring forth a new dimension of complexity that
demands careful consideration (Nicolas, 2019). These challenges, when not diligently addressed, cast shadows
upon the realm of flight security, reminding us that even the most groundbreaking innovations bear intricacies
that warrant meticulous attention.

The ADSS is a surveillance approach which airplane automatically provides data links via on-board navigation
and position fixing system It uses onboard data of the flights relayed with a transponder device for analysis to
monitor and track the planes. Transponder is a telecommunication device installed on the airplanes onboard
system for information relay to the ground for monitoring (Plass et al., 2015).In the tapestry of modernization
sweeping through the aviation industry, ADS-B emerges as a cornerstone, harmonizing precision, real-time
insight, and comprehensive data dissemination. This technology is more than a mere tool; it's a paradigm shift,
meticulously engineered to transcend limitations and enhance the fundamental fabric of aviation
operations(Plass et al., 2015; Dinc et al., 2017).

This study presents a secure aviation control by streamlining Automatic Dependent Surveillance-Broadcast
(ADS-B) perception system. Three assaults were the major topics considered: velocity drift attacks, ghost
aircraft injection, and route modification. This study seeks to give a novel approach that can successfully
identify injected messages even in the face of novel assaults (zero-day attacks). The key benefit was using a
current dataset to produce training and testing materials that were more adaptable and dependable. These
materials were then pre-processed before being used with several machine learning algorithms to potentially
provide the most accurate and time-efficient model. (Al-Haija & Al-Tamimi 2024).

According to Wireless Avionics Intra-Communications (WAI, 2015), the bedrock of ADS-B's prowess is its
seamless integration with the Global Positioning System (GPS). This celestial navigation backbone furnishes
ADS-B with the accuracy and reliability required for precision surveillance. The resulting stream of data
pulsates with integrity, providing air traffic controllers, pilots, and stakeholders with a comprehensive, real-time
overview of aircraft in the skies. Machine learning algorithms play a significant role in improving airplane
communication and tracking surveillance systems. These algorithms leverage the power of data analysis and
pattern recognition to enhance the efficiency, accuracy, and security of communication and tracking processes
(Fleischman et al., 2006; Kekong et al., 2019).

The fusion of data science and aviation expertise within the scope of FTMS and ML holds the key to
overcoming these challenges, through the intricate comprehension of the aviation operation via informed flight
data modelling and ML algorithm, thus presenting a reliability and yet autonomous system which optimize the
overall performance of flight surveillance and security in the aviation industry. To this end, this study proposed
to develop an autonomous system which can track and monitor flight patterns intelligently using ML algorithm
and deployed at the aviation industries for real time flight surveillance operations.

II. RESEARCH METHODOLOGY

The methodology for the study begins with collection of data, data analysis and deduction methods. A new
Airplane Trajectory Prediction (ATP) model was proposed and developed using machine learning algorithm.
The ATP model was integrated into the ATMS and programmed using MATLAB. The performance was tested
using simulation and results validated with deduction method, after comparative analysis.

A. Data Collection
This is the secondary data collection, as the primary data collection earlier was used for characterization
purposes. The secondary data collection considered the Ibom Air, flight report from Enugu to Lagos, in the year
2023, from the AkanuIbiam International Airport, Enugu, Nigeria. The data collection considered key flight
plan parameters such as altitude, latitude, longitude, time, speed, course, signal strength, losses, and latency. The
collected data consider three classes of common flight behaviours which are normal flight, in-flight delay and
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high-speed behaviour. The data visualization for each class was reported in the Table 1-3 using explorative data
analysis which visualized the first few columns of the dataset.

Table 1: Data visualization for normal flight behaviour

Time (mm:ss) Latitude Longitude
Altitude
(ft)

Speed
(mph) Course

Signal Strength
(dBm)

Losses
(%)

Latency
(ms)

2023-01-13 16:00 6.7777° N 7.6553° E 36000 600 120° 80 1 15
2023-01-13 16:15 6.8835° N 7.6994° E 38000 620 130° 78 1.2 14
2023-01-13 16:30 6.9986° N 7.7443° E 34000 580 110° 85 1.8 17
2023-01-13 16:45 6.4313° N 7.5352° E 31000 530 95° 93 1.5 19
2023-01-13 17:00 6.2700° N 7.5066° E 37000 610 125° 82 1.3 16

Table 2: Data visualization for In-flight delay

Time (mm:ss) Latitude Longitude
Altitude
(ft)

Speed
(mph) Course

Signal Strength
(dBm)

Losses
(%)

Latency
(ms)

2023-02-13 16:00 6.7777° N 7.6553° E 36000 200 70° 78 1.7 11
2023-02-13 16:15 6.8835° N 7.6994° E 38000 120 70° 79 1.4 11
2023-02-13 16:30 6.9986° N 7.7443° E 34000 280 60° 83 1.2 13
2023-02-13 16:45 6.4313° N 7.5352° E 31000 230 57° 93 1.6 16
2023-02-13 17:00 6.2700° N 7.5066° E 37000 210 105° 82 1.1 13

Table 3: Data visualization for High speed

Time (mm:ss) Latitude Longitude
Altitude
(ft)

Speed
(mph) Course

Signal Strength
(dBm)

Losses
(%)

Latency
(ms)

2023-01-13 16:00 6.7777° N 7.6553° E 36000 800 120° 120 2.1 23
2023-01-13 16:15 6.8835° N 7.6994° E 38000 850 130° 118 3.2 27
2023-01-13 16:30 6.9986° N 7.7443° E 34000 970 110° 115 3.8 24
2023-01-13 16:45 6.4313° N 7.5352° E 31000 860 95° 109 3.5 25
2023-01-13 17:00 6.2700° N 7.5066° E 37000 820 125° 102 3.3 27

B. Data processing
The data collected was processed using imputation methods such as missing data replacement and normalization
method. The methods used for the missing data replacement is the mean imputation technique, which the
average of the column values is computed and used to determine the missing value. For the normalization
process, the Z-normalization process was applied, considering the standard deviation and mean of the data to
generated new form of data within values between 0 and 1.

C. Frequency Doubling Transformation approach
Feature transformation is a crucial step in preparing the data for machine learning models. The technique used is
the frequency doubling transformation approach. This transformation method involves manipulating the
frequency content of the features through the duplication of the frequency components within the data. This
process enhances the discriminatory power of the features, making them more suitable for the machine learning
model.

D. Support Vector Machine (SVM) concept

A Support Vector Machine (SVM) is a powerful machine learning algorithm which can solve both classification
and regression problem. Because of its diverse capacity, good classification and regression performance,
especially when there is limited training data, it was applied in this research for the generation of the ATM. The
SVM operates by determining the optimal hyper-plane (classifier) which classified the input data points into
support vectors classes, to solve a problem. Support Vector Machines (SVMs) utilize several crucial
hyperparameters to shape the model's learning process. These hyper-parameters influence the SVM's
performance. The kernel defines the type of decision boundary, while the regularization parameter (C) controls
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the trade-off between smoothness and accurate classification. Gamma determines the influence of individual
training samples, while degree and coefficients are relevant for polynomial and sigmoid kernels. Decision
function shape defines the strategy for multi-class classification, and the shrinking hyper-parameter speeds up
training for large datasets. Adjusting these hyper-parameters, often through cross-validation and grid search, is
crucial to finding the optimal configuration for a given dataset, ensuring the SVM achieves optimal performance
on unseen data. The operation of the SVM following the following steps in Fig.1:

Fig.1: Block Diagram of SVM operations

The SVM operated by extracting the data imported into X and Y support vectors. These data are divided into
training and test sets, then the classifier is applied to determine the optimal hyper-plane i.e the decision
boundary and then make prediction. The support vector algorithm is presented as:

E. Support Vector Algorithm
1. Start
2. Load dataset
3. Split dataset into training and test set
4. Initialize hyper-parameters
5. Extract data features into support vectors
6. Adjust hyper-parameters to determine optimal decision boundary
7. Determine hyper-plane
8. Apply for classification
9. Return prediction output
10. End

F. Training of the SVM with the Flight Data Processed

To train the SVM, the data processed classes were separately imported into the model, while the hyper-
parameters such as kernel, regularization parameter (C), width and bias function are optimally adjusted until the
optimal hyper-plane is generated which is the classifier for each class. Before the training process, the data are
divided into test, train and validation sets. The test set which are the true values are used to test the trained
model which are the predicted values, while the disparities between them is the error, which informed that
optimization process of the hyper-parameters. During the training, parameters such as accuracy, positive
predictive value, true positive rate, true negative rate, area under curve are all applied to evaluate the model. The
results were reported in the chapter four, while the ATM model generation process flow was presented in the
Fig.2.



Journal of Inventive Engineering and Technology (JIET) November/December 2024

w w w . j i e n g t e c h . c o m . A l l R i g h t s R e s e r v e d . 2 0 2 4 Page 1313

Fig. 2: Process diagram of the ATM

The data of flight information which has three classes of Normal; In-flight delay and high speed were imported
separately for processing, using imputation and Z- normalization process. The data process was performed to
ensure data completeness and minimize the risk of over-fitting problem during training of machine learning
models. The class was each was transformed using frequency doubling technique, then imported into SVM for
training and generation of the hyper-plane classifier of Normal; In-flight delay and high-speed classifiers
respectively which was applied for the prediction of flight behaviour. The Fig.3 presented the flow chart for the
SVM training.

To train the SVM, as a multi-classifier, the three data classes were separately imported to the after processing
and transformation to the SVM model and train. During the training, the SVM hyper parameters such a kernel,
weight, regularization are adjusted while monitoring the error between the hyper-plane generated and the
support vectors. When the error is minimized the training stops, then the classifier which is the optimal hyper-
plane is generated. In this case three different classifiers were generated, each for the data class and were used to
model the SVM based multi-classifier.
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Fig. 3: Flowchart of the SVM training to generate multiple classifiers

G. The SVM Based Multi-classifiers

Traditionally SVM is applied for binary classification, as it operated considering only two classes of positive
and negative support vector. Hence the multi-classifier generated from the respective flight data training with
SVM were integrated for binary classification. To achieve this, the normal flight classifier was used as the
positive support vector (X), while the in-flight delay classifier and high-speed flight classifiers were integrated
into the negative support vectors (Y). the Fig. 4 presented the graphical model of the multi-class SVM classifier
generated.
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Fig. 4: Multi-class SVM classifiers generated as a binary classifier

The Fig. 4 presented the SVM classifier which showed how the three classifiers were used to formulate the
binary classification model used by the SVM for the classification of flight behaviour. The normal flight
classifier forms the positive support vectors while the in-flight delay and high-speed classifier formulated the
negative class of the support vector. These two classes are used by the hyper-plane to decide the flight
behaviour as the ATM.

H. The SVM Based Airplane Tracking Model
The SVM based ATM generated with the three classifiers was utilized for the tracking of airplanes. When test
data from onboard flight information is collected, it is processed and the features transformed into support
vectors compatible formats for classification using the decision boundary of the SVM hyper-plane. During the
classification process, the is the features are classified to the positive class by the decision boundary, it is normal
flight behaviour, else if classified in the negative class, it is in-flight delay or the flight on very high speed.
However, when none of the features fall within either of the three classes, then flight is detected to have diverted
from its trajectory plan. The airplane tracking algorithm is presented as:

I. Airplane Tracking Algorithm
1. Start
2. Load data
3. Load trained SVM model
4. Extract features
5. %% to determine the class of the features
6. Apply decision boundary with hyper-plane
7. If
8. High speed is predicted
9. Return output as “high speed”
10. Else if
11. In-flight delay predicted
12. Return output as “In-flight delay”
13. Else if
14. Normal flight is predicted
15. Return output as “Normal flight behaviour”
16. Else
17. Predict expected flight position
18. Then
19. Return output as “flight out of trajectory
20. End If
21. Return to step 2
22. End
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The Airplane Tracking Algorithm showcased how the trained SVM was used to predict diverse behaviour of the
flights online. When the data from the flight was loaded into the model, the features are extracted, then the
classifier made of three hyper-planes was used to determine the flight behaviour. In addition, when data stop
coming into the model for prediction, the system was able to predict the expected position of the flight. The Fig.
5 presented the flow chart of the algorithm.
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Fig. 5: Flow chart of the ATM

The Fig. 5 showed the flow chart of the ATM, starting with the data input which is testing and training dataset
of the flight behaviour. The data was processed using mean imputation method or data completeness, then Z-
normalization was applied to normalize the data features into a compatible format and transform the features
using frequency doubling technique. The transformed data was feed to the trained SVM which applied the
hyper-plane for decision boundary to predict the flight behaviour.
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J. SYSTEM IMPLEMENTATION

MATLAB, is a high-level programming environment primarily designed for numerical computing, data analysis,
and visualization. In MATLAB, programming is facilitated through an interactive and user-friendly interface
that enables the manipulation of arrays, matrices, and data structures with ease. The language is renowned for its
extensive built-in functions and toolboxes, covering diverse areas such as signal processing, image processing,
machine learning, and more. This makes MATLAB a powerful tool for scientific research, engineering
applications, and algorithm development. With its intuitive syntax and a rich set of features, MATLAB
promotes efficient prototyping and testing of algorithms, making it a popular choice in academia, industry, and
research environments. Additionally, MATLAB provides an Integrated Development Environment (IDE) with a
script editor, debugger, and visualization tools, contributing to a seamless and interactive programming
experience.

III. RESULTS AND DISCUSSION

In the realization of this goal, SVM algorithm has been trained as a predictive model to estimate the position of
flights in real-time. During the training process, parameters such as regression mean absolute error and
regression-square were all applied to measure the performance of the SVM hyper-plane which is the tool used
for the decision process. The Fig. 6 presented the results of the MAE.

Fig. 6: Result of the MAE

The Fig.6 showcased the MAE performance which measured the relationship mean error which during the
prediction of true values with actual flight values. The aim is to report the error values equal or approximately
zero, which implied perfect fitting of the model. From the result it was observed that the average MAE recorded
0.11, which is good at it implies significantly low error in the fitting process. In the Fig.7, the R2 graph was
reported.
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Fig. 7: Result of the R-squared

The Fig. 7 showcased the R-squared result of the SVM model used in checking the model probability of correct
model fitness. This graph tells how much of the variation in the dependent variable is explained by the
independent variables included in the model. It's a measure of how well the regression model fits the observed
data. The aim is to achieve targeted R-squared value of 1 or approximately 1. From the result it was observed
that the R-squared recorded a value of 1, which implied that the trained model was able to correctly predict the
actual position of flight. Other results such as the accuracy reported 0.89, which indicated an 89% classification
success, and also a false detection rate of 11%. Overall, the results showed that the trained SVM model for the
prediction of flight trajectory was able to correctly predict flight behaviour with an accuracy of 89%. Based on
this positive success rate, the model was integrated into the control system of the ground working station for the
tracking and monitoring of flight behaviour.

A. Result of system integration

The section presented the result of the system integration. This process involved the deployment of the SVM-
based airplane tracking system at the control network of the ground station for the autonomous monitoring and
tracking of airplanes. Here the deployed system was applied to track the Ibom air travelling from Enugu to
Lagos. The result of is presented in the Table 4:

Table 4: Result of Ibom Air tracking with SVM
Time (HH:MM) Latitude (N) Longitude (E) Altitude (ft) Speed(mph) Course (°)
2023-01-13 16:00 6.4499 7.0981 31150 534 124.6
2023-01-13 17:15 6.4877 7.1399 30972 551.8 123.71
2023-01-13 18:30 6.5254 7.1818 30794 516.2 122.82
2023-01-13 19:45 6.5631 7.2236 30616 471.7 121.93
2023-01-13 20:00 6.6007 7.2654 30438 542.9 121.04
2023-01-13 21:15 6.6383 7.3072 30260 480.6 120.15
2023-01-13 22:30 6.6759 7.3490 30082 445 119.26
2023-01-13 23:45 6.7135 7.3908 29904 507.3 118.37
2023-01-13 24:00 6.7510 7.4325 29726 498.4 117.48
2023-01-13 25:15 6.7885 7.4743 29548 471.7 116.59
2023-01-13 26:30 6.8259 7.5160 29370 534 115.7
2023-01-13 27:45 6.8633 7.5577 29192 551.8 114.81
2023-01-13 28:00 6.9007 7.5994 29014 516.2 113.92
2023-01-13 29:15 6.9380 7.6411 28836 471.7 113.03
2023-01-13 30:30 6.9753 7.6827 28658 542.9 112.14
2023-01-13 31:45 7.0125 7.7243 28480 480.6 111.25
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2023-01-13 32:00 7.0566 7.7454 28480 445 111.25
2023-01-13 33:15 7.0164 7.7434 28480 507.3 111.25
2023-01-13 34:30 7.0455 7.7487 28480 498.4 111.25
2023-01-13 35:45 7.0654 7.7534 28480 471.7 111.25
2023-01-13 36:00 7.0656 7.7467 28480 534 111.25
2023-01-13 37:15 7.0566 7.7335 28480 551.8 111.25
2023-01-13 38:30 7.0656 7.7673 28480 516.2 111.25
2023-01-13 39:45 7.0634 7.7658 28480 471.7 111.25
2023-01-13 40:00 7.0687 7.7455 28480 542.9 111.25
2023-01-13 41:15 7.7567 7.4186 29370 480.6 106.8
2023-01-13 42:30 7.8665 7.4925 28925 542.9 102.35
2023-01-13 43:00 7.0564 7.7264 28480 445 111.25
2023-01-13 44:15 7.0545 7.7243 28480 507.3 111.25
2023-01-13 45:30 7.0981 7.7546 28480 498.4 111.25
2023-01-13 46:45 7.2599 7.7257 28480 471.7 111.25
2023-01-13 47:00 7.4518 7.7865 28480 534 111.25
2023-01-13 48:15 7.6736 7.7657 28480 551.8 111.25
2023-01-13 49:30 7.9254 7.7257 28480 516.2 111.25
2023-01-13 50:45 7.0981 7.7246 28480 471.7 111.25
2023-01-13 51:00 7.0454 7.7249 28480 542.9 111.25
2023-01-13 52:15 7.7772 7.4143 29370 480.6 106.8
2023-01-13 53:30 7.8665 7.4925 28925 542.9 102.35
2023-01-13 54:00 7.0133 7.7453 28480 445 111.25
2023-01-13 55:15 7.0453 7.7254 28480 507.3 111.25
2023-01-13 56:30 7.0102 7.7224 28480 498.4 111.25
2023-01-13 57:45 7.0355 7.7234 28480 471.7 111.25
2023-01-13 58:00 7.0252 7.7243 28480 534 111.25
2023-01-13 59:15 7.0435 7.7286 28480 551.8 111.25
2023-01-13 60:30 7.0156 7.7254 28480 516.2 111.25
2023-01-13 61:45 7.0133 7.7876 28480 471.7 111.25

Table 4 presented the performance of the SVM based airplane tracking system on route Enugu to Lagos for
Ibom air. From the result, it was observed that the new model, was able to estimate the behaviour of the flight
from the route at every 15seconds interval. The result also showed that at every instant, data was estimated
which report the supposed flight position. The implication of this result is that the projected flight plane reported
here can be used to track the position of the flight at all times. Even if the flight was not able to sends feedback
to the ground station operators, the operators can easily depend on the estimated flight plan to make analysis and
determine the condition of the flight.

B. System Validation using Ibom air
The validation of the system was performed using deduction method. The method compared the performance of
the actual data of Air peace and Ibom air with the new SVM based flight estimation system travelling from
Enugu to Lagos and considering speed, altitude and course.

Table 5: Validation result with Ibom air considering speed and altitude
Time
(HH:MM)

Actual Altitude
(ft)

Actual Speed
(mph)

Actual
Altitude (ft)

Speed (mph)
with SVM

Course (°)
with SVM

Actual
Course (°)

16:00 35,000 600 31150 534 124.6 140
17:15 34,800 620 30972 551.8 123.71 139
18:30 34,600 580 30794 516.2 122.82 138
19:45 34,400 530 30616 471.7 121.93 137
20:00 34,200 610 30438 542.9 121.04 136
21:15 34,000 540 30260 480.6 120.15 135
22:30 33,800 500 30082 445 119.26 134
23:45 33,600 570 29904 507.3 118.37 133
24:00 33,400 560 29726 498.4 117.48 132
25:15 33,200 530 29548 471.7 116.59 131
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26:30 33,000 600 29370 534 115.7 130
27:45 32,800 620 29192 551.8 114.81 129
28:00 32,600 580 29014 516.2 113.92 128
29:15 N/A N/A 28836 471.7 113.03 N/A
30:30 32,200 610 28658 542.9 112.14 126
31:45 32,000 540 28480 480.6 111.25 125
32:00 32,000 500 28480 445 111.25 125
33:15 32,000 570 28480 507.3 111.25 125
34:30 32,000 560 28480 498.4 111.25 125
35:45 32,000 530 28480 471.7 111.25 125
36:00 32,000 600 28480 534 111.25 125
37:15 32,000 620 28480 551.8 111.25 125
38:30 32,000 580 28480 516.2 111.25 125
39:45 N/A N/A 28480 471.7 111.25 N/A
40:00 32,000 610 28480 542.9 111.25 125
41:15 33,000 540 29370 480.6 106.8 120
42:30 32,500 610 28925 542.9 102.35 115
43:00 32,000 500 28480 445 111.25 125
44:15 32,000 570 28480 507.3 111.25 125
45:30 32,000 560 28480 498.4 111.25 125
46:45 32,000 530 28480 471.7 111.25 125
47:00 32,000 600 28480 534 111.25 125
48:15 N/A N/A 28480 551.8 111.25 N/A
49:30 N/A N/A 28480 516.2 111.25 N/A
50:45 N/A N/A 28480 471.7 111.25 N/A
51:00 N/A N/A 28480 542.9 111.25 N/A
52:15 33,000 540 29370 480.6 106.8 120
53:30 32,500 610 28925 542.9 102.35 115
54:00 32,000 500 28480 445 111.25 125
55:15 32,000 570 28480 507.3 111.25 125
56:30 N/A N/A 28480 498.4 111.25 N/A
57:45 32,000 530 28480 471.7 111.25 125
58:00 32,000 600 28480 534 111.25 125
59:15 32,000 620 28480 551.8 111.25 125
60:30 32,000 580 28480 516.2 111.25 125
61:45 32,000 530 28480 471.7 111.25 125

The Table 5 presented the comparative analysis of the data analysis of the new system developed with SVM
based flight estimation model which was deployed for the tracking of Ibom air from Enugu to Lagos. The result
showed how the new system was able to monitoring the flight using real time data collected from the flight and
also estimated data by the SVM based model which estimated the position of the flight. From the result, it was
observed that while the main flight due to bad weather condition was not able to send signal at some point, the
trained SVM model was able to estimate the position of the flight. In addition, the result showed that when the
online flight sends data of its real-time altitude, the data was very close to the estimated altitude, with 89%
correct prediction success rate.From the result in the graph, it was observed that while the normal flight sends its
speed information to the ground station, the SVM based model was able to also estimate the flight speed at a
close proximity. The result demonstrated the effectiveness of the SVM based model in estimating the flight
behavior. Finally, it was observed that while at some points, the fight course was not recorded in the real time
from the online flight; the SVM based model was still able to estimate the course of the flight with close
proximity. Overall, the implications of the SVM-based model's success in estimating altitude, course, and speed
extend to various aspects of autonomous flight tracking and safety, contributing to the advancement and
adoption of autonomous aviation technologies in the existing ADSS.
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IV. CONCLUSION

This work used the Support Vector Machine (SVM) technique to effectively create and deploy an Airplane
Trajectory Prediction (ATP) model integrated into an Air Traffic Management System (ATMS). The approach
included feature transformation, secondary data collecting, data preparation, and the use of SVM-based multi-
classification to categorize flying behaviours into three groups: regular flight, in-flight delay, and high-speed.
Furthermore, a new method called Frequency Doubling Transformation was used, which improved
classification accuracy and feature discrimination. The ATMS's use of the SVM-based ATP model offered a
reliable framework for monitoring and forecasting aircraft movements in real time. This framework successfully
reduced the dangers of overfitting and ensured accurate predictions by utilizing hyper-parameter optimization
and sophisticated data pre-treatment techniques like Z-normalization and mean imputation. The effectiveness of
the ATP model in recognizing flying behaviours and spotting departures from intended paths was shown by
simulation results. Air traffic safety, efficiency, and operational decision-making can all be greatly improved by
the system's capacity to anticipate possible in-flight abnormalities, such as delays and high-speed manoeuvres.
The project concluded by developing a scalable and flexible model for tracking and predicting airplane
behaviour in real time. The results demonstrate how machine learning can improve air traffic control. The
achievement level is 89% correct classification of flight behaviour. To further increase the ATP model's
accuracy and scalability, future studies can investigate the integration of more sophisticated machine learning
models, such deep learning, and real-time testing with bigger datasets.
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