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ABSTRACT : This research study is centered on the optimization and prediction of Percentage Elongation of 
Mild steel weld metal using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) from 
Tungsten Inert Gas (TIG) welding process. Welding Current, Welding Voltage and Gas Flow Rate are the 
process input parameters and the response variable is Percentage Elongation. The final solution of the 
optimization process is to determine the most appropriate percentage combination of the Percentage Elongation 
with the optimum values of Current, Voltage and the Gas Flow Rate that will adequately optimize (maximize) 
the Percentage Elongation of the Mild Steel weld metal. Percent elongation is a mechanical property of a metal 
that indicates the degree to which a metal may be bent, stretched or compressed before it ruptures. It’s an 
important quality for metals used in welding, as they need to be able to withstand the high temperatures and 
stresses involved in the welding process. Optimizing this process is one sure way of producing a quality weld.  
The RSM model produced the numerical optimal solution for the weldment of Mid Steel (MS). The model 
Coefficient of Determination (R2) and Adjusted R2 for Percentage Elongation are 93.48% and 87.61% 
respectively. The Optimal Solutions for the input parameters are; Welding Current, 180.00Amps, Welding 
Voltage, 21.672Volts and Gas Flow Rate, 15.504L/min. The Optimal Solution for the response variable, 
Percentage Elongation is 22.111%. From the analysis of variance (ANOVA), it was observed that Gas Flow 
Rate (GFR) input parameter has more significant effect on the Percentage Elongation response variable. The 
ANN analysis predicted an optimal solution for the Percentage Elongation response variable to be 18.5044%, 
with an overall strong correlation (R) between the input factors and the response variable to be 99.89%. 
Therefore, it is advised that the models be used to navigate the design space. 
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I. INTRODUCTION 
Welding is a commonly used method of joining materials in various industrial applications. Welding of mild 
steel is particularly important, as it is a widely used material in many different industries. Welding parameters, 
such as Percentage Elongation significantly affect the resulting weldment strength and quality. Therefore, there 
is a need to optimize this parameter in order to achieve the desired strength and quality of the weld joint. In the 
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process industry welding is very widely used by metal workers in fabrication, maintenance and repairs of parts 
and structures. Welding is the most convenient, economical, efficient and rapid way of joining two or more 
metals together to form a monolithic structure (Carry, H. B., 1998). Its advantages over other metal joining 
processes is in its flexibility, low fabrication cost, simple set up and production of very efficient joints 
(Armentani  et al., 2007). 

In optimizing the welding parameters, response surface methodology (RSM) and artificial neural network 
(ANN) models are commonly used. RSM is a statistical approach that can be used to optimize the welding 
process by analyzing the relationship between the input parameters and the output responses. ANN is a 
computational technique that can be used to model complex relationships between the input and output 
variables. This research study aims to optimize and predict the liquidus temperature and its effect on mild steel 
weldment strength using RSM and ANN. The study will start by collecting data on the welding process, which 
will be used to develop RSM and ANN models. The models will be used to determine the optimal welding 
parameters that will result in a weld joint with the desired strength. The study will also investigate the effects of 
the welding parameters on the microstructure of the weldment, as well as the mechanical properties.  

Percent elongation is a mechanical property of a metal that indicates the degree to which a metal may be bent, 
stretched or compressed before it ruptures. It is a measure of ductility, which provides the confidence that metal 
can be formed without cracking or fracturing. It is also a measure of toughness of a metal. Therefore percent 
elongation, especially at fracture, is of engineering importance not only as a measure of ductility but also as an 
index of the quality of the metal. It is one of the essential mechanical properties for weld joints (frepd.com, 
2010) and can be affected by welding parameters (Bang et al. 2008 and Tewari et al. (2007)).  

In GTAW also known as TIG process while some work has been done to investigate the effect of welding 
parameters on the strength of welded joints (Edi, W. et al.(2018); Rajeev Ranjan, (2014); Rohit, J. and Jha, A. 
K., 2014) very limited attempt has been made on the effects of these parameters on percent elongation especially 
on mild steel weld joints, and this is the basis of this study. In TIG welding, a non-consumable tungsten 
electrode of diameter between 0.5 to 6.5 mm is employed with an inert shielding gas (Rishi et al., 2017). The 
shielding gas used in this experiment is 100% pure Argon. It protects the weld pool from atmospheric 
contamination with free gases of the air that could be detrimental to the weld quality. The consumable 
composition of the shielding gas also directly influences the strength and quality of a weld, and thereby, 
contributes immensely to weld metal properties (strength and quality). TIG welding is very reliable process for 
improving quality characteristics of weld pool. A mathematical model was developed for the prediction of TIG 
weld bead characteristics (Prashant, A. K.,  Sachin, A. M. , 2015 ).  

A critical study of numerous related literatures has revealed that the optimization and prediction of Percentage 
Elongation of mild steel weld metal using Welding Current (WC), Welding Voltage (WV) and Gas Flow Rate 
(GFR) jointly as process input factors from Tungsten Inert Gas (TIG) welding process, using process factor 
design model has not been established to the best of our knowledge, and this is the gap this research study 
covered.  

The findings of this study will benefit the welding industry by providing a framework for optimizing the 
welding process and predicting the resulting weldment strength. The study will also contribute to the 
development of new technologies and techniques for welding of mild steel. Overall, this study aims to improve 
the quality and efficiency of welding, which will have a positive impact on various industries that rely on this 
process. 

 II. MATERIALS AND METHODS 

Thirty (30) pieces of mild steel coupons measuring 60mm x 40mm x 10mm was prepared and used for this 
experiment. The experiment was performed only twenty (20) times. The welded specimens were prepared and 
then subjected to tensile tests according to ASTM E8 standard procedure using a Universal Testing Machine 
(UTM). The tensile test specimens were fastened to tapered slots with a pair of racked jaws at the center of the 
upper and lower crossheads of the loading unit of the UTM to grip the tensile test specimens. When the load is 
applied from the control unit of the UTM, there’s a relative movement of the lower and upper crossheads of the 
UTM as a result of the extension of the specimen. Loads are applied until the specimens permanently deform or 
fractures. The extension is measured by an elongation scale which is provided along with the loading unit. The 
percentage elongation is determined using the following expression: 
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%Elongation =   X 100 
  

The central composite design (CCD) matrix was developed for the response surface methodology (RSM), using 
the design expert software, producing twenty (20) experimental runs. The input parameters and output 
parameter make up the experimental matrix and the responses recorded from the weld samples were used as the 
data. An artificial neural network (ANN) was selected and trained and was used for the neural network analysis.  

The key parameters considered in this work are Welding Current (WC), Welding Voltage (WV) and Gas Flow 
Rate (GFR). The range of the process input parameters obtained from the experiment is shown in Table I. 

Table 1: Input Factors Boundary Limit. 

Factor Unit Symbol Axis Low (-) Axis High (+) 
Welding Current Amp. A 180 210 
Welding Voltage Volt. V 20 23 
Gas Flow Rate Lit/Min. F 15 18 

  

The Table 1 shows the adopted boundary conditions of the input process factors used in this study. The bases of 
selecting the boundary conditions are based on experimental values. 

The experimental matrix comprising of the three input variables namely; Current (Amps.), Voltage (Volts.), Gas 
Flow Rate (L/min.) and five (5) response variables namely: Liquidus Temperature, Weld Time, Heat Transfer 
Coefficient, Ultimate Tensile Strength and Percentage Elongation in real values is presented in Table 2 below. 

Table 2: Central Composite Design (CCD) Matrix showing Experimental Results & Data 

Run Input Parameters Output 
Parameter 

Welding 
Current 

(Ampere) 

Welding 
Voltage 

(Volt.) 

Gas 
Flow 
Rate 

(L/min) 

Percentage 
Elongation. 

(%) 

1 180 20 18 15 
2 195 20 15 14 
3 210 20 18 21 
4 180 21.5 18 17 
5 180 20 16.5 14 
6 195 21.5 18 19 
7 210 23 18 15 
8 210 23 15 23 
9 180 23 15 25 
10 210 21.5 18 20 
11 210 23 15 25 
12 210 23 15 22 
13 180 20 18 16 
14 195 21.5 16.5 18 
15 210 23 16.5 15 
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16 210 23 18 14 
17 180 20 18 16 
18 180 23 18 17 
19 210 21.5 16.5 19 
20 210 20 16.5 21 

  

  

III.  RESULTS AND DISCUSSION 

The model statistics actually give insight into the model strength and the adequacy of the optimal second order 
polynomial equation. 

Table 3: Model Fit Summary Statistics for Percentage Elongation response variable 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R²  
Linear 0.0372 0.0508 0.2901 -0.1508  
2FI 0.0003 0.2433 0.7871 0.1615  
Quadratic 0.0385 0.4349 0.8761 0.7244 Suggested 
Cubic 0.4349  0.9014  Aliased 
 

The Table 3 shows the selected model fit summary of the response variable, Percentage Elongation. The 
selected model is based on the best probability value with less error in the selected model system. The selected 
model for Percentage Elongation is Quadratic non-linear model with a significance value of 0.0385 

Table 4: Focus on the model maximizing the Adjusted R² and the Predicted R² 

Source Std. Dev. R² Adjusted R² Predicted R² PRESS  
Linear 3.52 0.4022 0.2901 -0.1508 381.77  
2FI 1.93 0.8543 0.7871 0.1615 278.18  
Quadratic 1.47 0.9348 0.8761 0.7244 91.44 Suggested 
Cubic 1.31 0.9844 0.9014  * Aliased 

A: Table 4: Model Summary Statistics 

The model summary statistics of model’s fit shows the Standard Deviation, the R2, Adj.R2, Pred. R2 and the 
PRESS values for each complete model. 

In assessing the strength of the Quadratic Model towards optimizing (maximizing) the Percentage Elongation 
response variable, one-way analysis of variance (ANOVA) was employed as shown in Table 5: 
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Table 5: ANOVA Model Statistical Summary for Percentage Elongation. 

Source Sum of Squares df Mean Square F-value P-value  
Model 310.11 9 34.46 15.92 <0.0001 significant 
A-Welding Current 9.28 1 9.28 4.29 0.0652  
B-Welding Voltage 4.73 1 4.73 2.19 0.1701  
C-Gas Flow Rate 36.43 1 36.43 16.84 0.0021  
AB 24.75 1 24.75 11.44 0.0070  
AC 0.6324 1 0.6324 0.2923 0.6006  
BC 45.83 1 45.83 21.18 0.0010  
A² 0.2249 1 0.2249 0.1039 0.7538  
B² 11.80 1 11.80 5.45 0.0417  
C² 3.07 1 3.07 1.42 0.2608  
Residual 21.64 10 2.16    
Lack of Fit 16.47 7 2.35 1.37 0.4349 Not significant 
Pure Error 5.17 3 1.72    
Cor Total 331.75 19     

Analysis of variance (ANOVA) was needed to check whether or not the model is significant and also to evaluate 
the significant contributions of the linear term coefficients, the interactive term coefficients and the quadratic 
sum term coefficients on the response. The model F-value of 15.92 implies the model is significant. There is 
only a 0.01% chance that an F-value this large could occur due to noise. P-values less than 0.0500 indicate 
model terms are significant. In this case A, C, AB, BC, B² are significant model terms. Values greater than 
0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting 
those required to support hierarchy), model reduction may improve the model. The Lack of Fit F-value of 1.37 
implies the Lack-of-Fit is not significant relative to the pure error. There is a 43.49% chance that a Lack-of-Fit 
F-value this large could occur due to noise. Non-significant lack of fit is good as it indicates a model that is 
significant. 

Table 6: Fit Statistics for validating model significance towards maximizing P.E 

Std. Dev. 1.47  R² 0.9348 
Mean 18.75  Adjusted R² 0.8761 
C.V. % 7.85  Predicted R² 0.7244 
PRESS        91.44  Adeq Precision 13.4885 

In Table 6, the model Fit summary statistics shows that the Coefficient of Determination (R2) of the input 
factors and the response variables for the model are significantly adequate to the model developed for the 
Percentage Elongation response variable. The Coefficient of Determination of the variables shows that 93.48% 
of the input factors will be explained in the response variable of Percentage Elongation. The Predicted R-
Squared of 0.7244 is in reasonable agreement with the Adjusted R-Squared of 0.8761, that is the difference is 
less than 0.2. Adequate Precision measures the signal-to-noise ratio. A ratio greater than 4 is desirable. The ratio 
of 13.489 indicates an adequate signal. This model can be used to navigate the design space for Percentage 
Elongation.  

B. Diagnostic Plots 

The diagnostic case statistics actually give insight into the model strength and the adequacy of the optimal 
second order polynomial equation. 
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Fig.1: Studentized Residuals vs. Predicted to check for constant error. 

The Fig.1 shows the plot of residuals vs. predicted responses in the Percentage Elongation response variable, 
and it is clear from the figure that the actual and predicted values are closer to each other having small residuals. 
The plot shows that the errors in the predicted and the residuals are within limited values of errors that are 
insignificant in the system.  

 

Fig.2: The Diagnosis of the Cook’s Distance for Percentage Elongation. 
  

The Fig.2 shows the diagnosis of the input factors and the response variable to check and to look for outliers that 
will cause the influential values in the system. The Cook’s Distance shows that none of the experimental trials 
cause bias in the system. All the experimental trials are good and fit to predict the feasible response variable of 
Percentage Elongation in the system. The cooks distance for all the experimental trials falls within the range of 0 
and 1 indicating that there is no outlier in the data making the optimal solution strongly accepted. 
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Fig.3: Predicting Percentage Elongation using Contour Plot. 

The Contour Plot shows the influence of the input factors on the Percentage Elongation response variable at the 
highlighted points.  

  
Fig.4: 3-D Surface Plot showing effects of Current and Voltage on P.E. response 

variable. 

Fig.4 shows the influence of the input variables (Welding Current, Welding Voltage and Gas Flow Rate) on the 
Percentage Elongation response variable. The edges of the surface plots indicates the corresponding values of 
the response variables (Weld Time, Liquidus Temperature, Heat Transfer Coefficient, Ultimate Tensile Strength 
and Percentage Elongation) at the coordinate levels of the input variables. 
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C. Optimal Solutions 

The numerical optimization produced twenty (20) optimal solutions. The Optimal Solutions for the input 
process parameters indicate that the optimal solutions for Welding Current is 180.00Amps, Welding Voltage is 
21.672Volts and Gas Flow Rate is 15.504L/min, and the optimal solution for the Percentage Elongation  
response variable is 22.111%, indicating that the experimental trials are good and fit to predict the feasible 
response variable in the system. Therefore, the model can be used to navigate the design space.   

 

D.      Artificial Neural Network (ANN) Algorithm 

Artificial Neural Network analysis occurs in sequences and via neural network layers made up of 
artificial neurons. 

Sequence 1: Data Selection 

Neural Network analysis starts with the selection and training of an ANN model using a historical data. Real 
data from the experiment is then fed into the trained predictive model for analysis in order to predict future 
outcomes. The data fed into the neural network for analysis are both the input and output parameters generated 
as a result of experimental trials conducted in the research (See Table 2). The artificial neural network will 
select and analyze the data and predict outcomes for each of the experimental trials.  

Sequence 2: Data Training, Validation and Testing 

In the analysis of the data, Artificial Neural Network (ANN) randomly by default divides the 100% target 
timesteps (Real data) into three sets: Training Data (70%), Validation Data (15%) and Testing Data (15%). 
Seventy percent (70%) of the data are presented to the network during training and the network is adjusted 
according to the data errors. Fifteen percent (15%) of the data are used by the network to measure 
generalizations from the analysis, and to halt the data training once generalizations stop improving. And this is 
referred to as data validation. Fifteen percent (15%) of the remaining data used for testing has no effect on the 
data training, but serves as an independent measure of network performance during and after training of the 
data. 

The Artificial Neural Network (ANN) is trained to fit the input process variables and the output response 
variables. The type of data training method used in this research study is Levenberg-Marquardt back 
propagation. Training of the data automatically stops when the generalizations stops improving as indicated by 
an increase in the mean square error (MSE) of the validation samples. The mean square error (MSE) is the 
average squared difference between outputs and targets. The smaller the mean square error value (MSE) the 
better the predicted result while a mean square error (MSE) of zero (0) means that there is no error at all. 
Regression (R) values measure the correlation between the output values and the target values. A regression (R) 
value of one (1) means a close relationship but an R value of zero (0) means a random relationship.  

Sequence 3: Trained Results of Neural Network Data Analysis. 

The neural network (NN) then reveals the least Mean Square Error (MSE) value that gives the best fit data (that 
is, the predicted results). The data performance in this study shows that the least value of the Mean Square Error 
(MSE) in the data is very insignificant with an average value of 4.35x 10-26 units at the eight (8) iteration of the 
data training which is the best fitted data result.  
 
The best validation of the performance result is 2382.3681 units at the eight (8) iterations of the trained data. 
The Validation performance data value, Testing data and the Best fit data are closely related. However, the Best 
fit data is generated at the eight iterations with the Least Mean Square Error in the system.  
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Sequence 4: Regression Results of the Artificial Neural Network Data Analysis 

The result of the Trained Artificial Neural Network data analysis shows that the trained data output parameter 
has a Regression Correlation (R) of unity (1). The Validation Data generated in the system has Regression 
Correlation (R) of 0.99646 units. The Testing Data generated also have a Regression Correlation (R) of 0.99791 
units. However, the Overall Regression Correlation (R) of the data is 0.99893 units. This shows that the input 
process factors and the output process parameters have strong correlations at an average of 0.99893 units. This 
shows that the data used in the system are good and fit for statistical analysis.  

Table 7: ANN Predicted Results 

 Predicted Output Predicted Residual 

S/N Percentage 
Elongation. (%) 

Percentage Elongation. 
(%) 

1 60.62277 -45.6228 
2 113.7397 -99.7397 
3 148.4978 -127.498 
4 86.63008 -69.6301 
5 103.1488 -89.1488 
6 207.558 -188.558 
7 26.82108 -11.8211 
8 153.6502 -130.65 
9 76.80446 -52.8045 
10 90.21177 -70.2118 
11 102.2986 -77.2986 
12 138.4174 -116.417 
13 90.47311 -74.4731 
14 136.9269 -118.927 
15 57.67407 -42.6741 
16 123.7579 -107.758 
17 58.87403 -42.874 
18 121.0224 -104.022 
19 -5.26993 24.26993 
20 18.50438 2.49562 

 

Table 7 shows the Artificial Neural Network (ANN) predicted results of the Percentage Elongation response 
variable. The result shows that the predicted response parameter for Percentage Elongation is 18.50438%. The 
ANN result shows that the input process factors and the output process parameters have strong Coefficient of 
Determination (R) of the variables with an average of 0.99893 units (i.e. 99.89%). This shows that the data used 
in the system are good and fit for adequate statistical analysis. Therefore, the predictive model can be used to 
navigate the design space.  

E. Discussion of Results 

In this study, the response surface methodology (RSM) and artificial neural network (ANN) was used 
respectively to optimize and predict weld parameters. The goal of the optimization process is to determine the 
most appropriate percentage combination of the Percentage Elongation with the optimum values of Welding 
Current (Amps.), Welding Voltage (Volts.) and Gas Flow Rate (L/min) that will adequately optimize 
(maximize) the Percentage Elongation content in the mild steel weld metal. In the course of the experiment, 
ranges of values of the input parameters and output parameters were observed and recorded which makes up the 
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data (that is, the results from the weld specimens). A statistical design of experiment (DOE) using the central 
composite design method (CCD) was developed. Then, an experimental design matrix having twenty (20) 
experimental runs was generated. The input parameters and the output parameters make up the experimental 
matrix. Both the experimental matrix designed and the optimization analyses were executed with the aid of 
statistical tool called Design Expert Software 10.0.1 (DX.10.0.1).  

The result of the model analysis shows that a Quadratic Model for the process order which requires the 
polynomial analysis was selected for the response variables. The highest order polynomial where the additional 
terms are significant for the process factors, the model was selected as the best fitted model. In addition, the 
selected models have insignificant Lack-of-Fit. Model with significant Lack-of-fit cannot be employed for 
prediction. The reason for selection was the reasonable agreement between the P-value, R-Square value, the 
Predicted R-Square value, Adjusted R-Square value and the PRESS value. The model design summary shows 
that the minimum value observed for Percentage Elongation is 20.655%, with a maximum value of 23.522%, 
mean value of 18.75%, and standard deviation of 1.47%. The Optimal Solution for the response variable, 
Percentage Elongation is 22.111%.The model has a high signal-to-noise ratio of 13.489. In assessing the 
strength of the Quadratic Model towards optimizing the target response, one-way analysis of variance 
(ANOVA) table was generated for the response variable and results obtained is presented in Table 5. From the 
analysis of variance (ANOVA); Table 5, it was observed that Gas Flow Rate (GFR) input parameter has more 
significant effect on the Percentage Elongation response variable. 
To validate the adequacy of the Quadratic Model based on its ability in maximizing Percentage Elongation, the 
goodness of fit statistics presented in Table 6 was employed. 

From the Coefficient Estimation Analyses of the models, it was observed that the models possess a low standard 
error ranging. Standard errors should be similar within type of coefficient; however the smaller the standard 
error the better the result of the design. The Variance Inflation Factor (VIF) in this research is between one (1) 
to three point forty five (3.45) which shows that the Coefficient of Estimation of the input factors to the 
response parameters are adequate and is good as well as fit enough for more appropriate modeling of the system. 
Variance Inflation Factors (VIF) greater than ten (10) can cause bias in the modeling system and there is need to 
checkmate such factor or even replace the experimental trial, but Variance Inflation Factors (VIF) that is close 
to unity is good and fit for an adequate modeling of the response parameters. Variance Inflation Factor (VIF) 
less than 10.00 calculated for all the terms in the design indicated a significant model in which the input 
variables are well correlated with the response.  

Using Artificial Neural Network algorithm, the result of Table 7 observed that the Predicted Optimal Solution 
for the welding will produce a weldment with a Percentage Elongation of optimal value of 18.5044%. The input 
factors and the response variable have an overall strong correlation (R) of 99.893%. 

This research study has successfully demonstrated and well established a Response Surface Methodology 
(RSM) and Artificial Neural Network (ANN) algorithms to optimize and predict the Mild Steel weld metal 
parameters. In this study, the application of the welding input parameters design was used to express the optimal 
solutions of the response variables of the Mild Steel weldment.  
 
The development of a second order polynomial solution has been successfully achieved, validated by graphical 
and statistical results such as calculated Standard Error values, Variance Inflation Factor, Normal Probability 
Plot and Cook’s Distance plot etc. A scientific approach to determine the cause and effect relationship between 
the process parameters using expert systems has been successfully established and well demonstrated in this 
research study. 
In testing the accuracy of the models in actual application, experiment revealed that the models can be used for 
optimal solutions mostly in optimization of manufacturable input parameters in establishments that utilize steel 
materials, steel manufacturing companies and in industrialization generally. The optimal solutions and the 
models developed will influence the activities of Mild Steel production and usage. The application of the 
optimal solutions of the results will be of economic value to the utilizing companies and in the material usage. 
The research will serve as a reference to the users of Mild Steel and its application in Tungsten Inert Gas (TIG) 
welding process and in industries. 
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IV. CONCLUSION 

The quality and integrity of welded joints is highly influenced by the optimal combination of the welding input 
parameters. This research work focuses on the optimization and prediction of the Percentage Elongation of mild 
steel weld metal using RSM and ANN. The general research study aims to optimize and predict the Weld Time, 
Liquidus Temperature, Heat Transfer Coefficient and their effects on Mild Steel weldment strength using RSM 
and ANN. This research study developed models using expert systems (RSM) and neural network (ANN) to 
optimize and predict weld metal Weld Time, Liquidus Temperature, Heat Transfer Coefficient, Ultimate Tensile 
Strength and Percentage Elongation from input parameters namely: Welding Current (WC), Welding Voltage 
(WV) and Gas Flow Rate (GFR). Results from the Response Surface Methodology analysis shows that a 
Welding Current of 180.00Amps, Welding Voltage of 21.672Volts, Gas Flow Rate of 15.504L/min will produce 
an optimal solution of Percentage Elongation of 22.111% with a Coefficient of Determination (R2) of 93.48% 
and with a Desirability of 0.836. Using Artificial Neural Network algorithm (ANN), the network predicted that 
the input process factors and the response variables has an overall strong Regression (R) or Coefficient of 
Determination (R-Square) of 99.89%. However, in Artificial Neural Network (ANN), the result observed that 
the predicted optimal value for the Percentage Elongation response variable is 18.5044%. The mathematical 
relationship between the optimal input parameters and the response variables obtained from this research study 
is an improvement in the weld joint quality, and will save cost and time, and also minimize error in the mild 
steel welded joint and heat affected zones (HAZ). The information gathered from this study will also aid 
fabrication industries and industrialists to adequately select parameters and produce appropriate materials and 
structures required from the mild steel material. It is therefore recommended that the optimal Percentage 
Elongation and the optimized input parameters obtained in this study be employed so as to achieve the desired 
molten weld metal, weld strength and quality and also to minimize error in the welded joint and the heat 
affected zones (HAZ). It is also recommended that the optimal Percentage Elongation and optimized input 
parameters obtained from this study be utilized by users of the mild steel components and its applications for 
more economic value.  
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