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ABSTRACT : This study is focused on the optimization and prediction of Liquidus Temperature of Mild steel 
weld metal using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) from Tungsten 
Inert Gas (TIG) welding process. Welding Current, Welding Voltage and Gas Flow Rate are the process input 
parameters and the response variable is Liquidus Temperature. The final solution of the optimization process is 
to determine the most appropriate percentage combination of the Liquidus Temperature with the optimum 
values of Current, Voltage and the Gas Flow Rate that will adequately optimize (minimize) the Liquidus 
Temperature of the Mild Steel weld metal. Optimizing this process is one sure way of producing a quality weld. 
The RSM model produced the numerical optimal solution for the weldment of Mid Steel (MS). The model 
Coefficient of Determination (R2) and Adjusted R2 for Liquidus Temperature are 94.69% and 89.92% 
respectively. The Optimal Solutions for the input parameters are; Welding Current, 180.00Amps, Welding 
Voltage, 21.672Volts and Gas Flow Rate, 15.504L/min. The Optimal Solution for the response variable, 
Liquidus Temperature is 1484.7830C. From the analysis of variance (ANOVA), it was observed that welding 
current (WC) input parameter has more significant effect on the Liquidus temperature response variable. 
The ANN analysis predicted an optimal solution for the Liquidus temperature response variable to be 1464.49, 
with an overall strong correlation (R) between the input factors and the response variable to be 99.89%. 
Therefore, it is advised that the models be used to navigate the design space.  
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I. INTRODUCTION 
Welding is a commonly used method of joining materials in various industrial applications. Welding of mild 
steel is particularly important, as it is a widely used material in many different industries. Welding parameters, 
such as liquidus temperature significantly affect the resulting weldment strength and quality. Therefore, there is 
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a need to optimize this parameter in order to achieve the desired strength and quality of the weld joint.  

In optimizing the welding parameters, response surface methodology (RSM) and artificial neural network 
(ANN) models are commonly used. RSM is a statistical approach that can be used to optimize the welding 
process by analyzing the relationship between the input parameters and the output responses. ANN is a 
computational technique that can be used to model complex relationships between the input and output 
variables. This research study aims to optimize and predict the liquidus temperature and its effect on mild steel 
weldment strength using RSM and ANN. The study will start by collecting data on the welding process, which 
will be used to develop RSM and ANN models. The models will be used to determine the optimal welding 
parameters that will result in a weld joint with the desired strength. The study will also investigate the effects of 
the welding parameters on the microstructure of the weldment, as well as the mechanical properties.  

Each material has many different physical and chemical properties which can be altered after welding. Strength 
can be altered drastically by welding. If the weld is made with too little heat, little penetration will occur. If the 
weld is made with too much heat we could destroy the microstructure of the base material. Welding temperature 
varies depending on the melting temperature of the metals to be fused. Welding current and welding voltage 
controls the heat input to the weld joint. In Gas metal arc welding, welding voltage affects the arc length. 
Increase in arc length consequently leads to increase in the arc voltage due to the fact that extension of the arc 
exposes the entire arc column to the cool boundary of the arc (Fan et al. (2013). Prediction and Optimization of 
Heat Affected Zone (HAZ) width for SAW process shows that the HAZ has various regions which influence the 
ability of the joint to provide crack resistance and uniform strength in both the directions of the weld (Singh, 
2013).  Liquidus is the lowest temperature at which an alloy is completely liquid. The liquidus temperature, TL 
or Tliq, specifies the temperature above which a material is completely liquid (Askeland, D. R. and Wright, W. 
J, 2014) and the maximum temperature at which crystals can co-exist with the melt in thermodynamic 
equilibrium. It is mostly used for impure substances (mixtures) such as glasses, alloys and rocks. The Liquidus 
Temperature factor is a very important parameter considered to determine the quality and strength of a welded 
joint (Ojika, H.O. and Achebo, J.I., 2020). Liquidus Temperature is a significant parameter, not only for 
processes of melting and hot forming, but also for steel welding. For the sake of optimizing the existing 
processes of steel manufacturing, it is important to know phase transformation temperatures, or temperatures at 
which steel loses its plasticity or strength (Zhuang et al., 2015). Works toward optimizing the process of 
solidification of heavy forging ingots (Merder, T., 2014) were implemented in the casting and solidification of 
steel. Finally, an attention is focused on the fluid flow behavior of steel flow in the tundish (Merder, T. (2014). 
The methods of study of metallurgical processes are also based on knowledge of thermodynamic properties of 
materials occurring in a given technology nodes. Knowledge of the Liquidus and Solidus temperatures are 
critical parameters necessary for the optimal production of steel products. Correct setting of physical or 
numerical models are equally important for achieving the best steel melting and fabrication processes. The 
correct determination of these temperatures significantly influences the quality and properties of semi-finished 
products (Khosravifard et al., 2013).  

According to Bansal et al. (2015), Tungsten inert gas (TIG) welding is a thermal process that depends upon heat 
conducted through the weld joint materials. In TIG welding, a non-consumable tungsten electrode of diameter 
between 0.5 to 6.5 mm is employed with an inert shielding gas (Rishi et al, 2017). The shielding gas used in this 
experiment is 100% pure Argon. It protects the weld pool from atmospheric contamination with free gases of 
the air that could be detrimental to the weld quality. The consumable composition of the shielding gas also 
directly influences the strength and quality of a weld, and thereby, contributes immensely to weld metal 
properties (strength and quality). TIG welding is very reliable process for improving quality characteristics of 
weld pool. A mathematical model was developed for the prediction of TIG weld bead characteristics (Prashant, 
A.K. , Sachin, A.M. ,2015). 

A critical study of numerous related literatures has revealed that the optimization and prediction of Liquidus 
Temperature of mild steel weld metal using Welding Current (WC), Welding Voltage (WV) and Gas Flow Rate 
(GFR) jointly as process input factors from Tungsten Inert Gas (TIG) welding process, using process factor 
design model has not been established to the best of our knowledge, and this is the gap this research study 
covered.  

The findings of this study will benefit the welding industry by providing a framework for optimizing the 
welding process and predicting the resulting weldment strength. The study will also contribute to the 
development of new technologies and techniques for welding of mild steel. Overall, this study aims to improve 
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the quality and efficiency of welding, which will have a positive impact on various industries that rely on this 
process. 

 II. MATERIALS AND METHODS 

The key parameters considered in this work are Welding Current (WC), Welding Voltage (WV) and Gas Flow 
Rate (GFR). The range of the process input parameters obtained from the experiment is shown in Table I. Thirty 
(30) pieces of mild steel coupons measuring 60mm x 40mm x 10mm was prepared and used for this experiment. 
The experiment was performed only twenty (20) times. A thermocouple was connected to the weld specimen to 
take temperature readings. The central composite design (CCD) matrix was developed for the response surface 
methodology (RSM), using the design expert software, producing twenty (20) experimental runs. The input 
parameters and output parameters make up the experimental matrix and the responses recorded from the weld 
samples were used as the data. An artificial neural network (ANN) was selected and trained and was used for 
the neural network analysis.  

Table 1: Input Factors Boundary Limit. 

Factor Unit Symbol Axis Low (-) Axis High (+) 
Welding Current Amp. A 180 210 
Welding Voltage Volt. V 20 23 
Gas Flow Rate Lit/Min. F 15 18 

  

The Table 1 above shows the adopted boundary conditions of the input process factors used in this study. The 
bases of selecting the boundary conditions are based on experimental values. 

The experimental matrix comprising of the three input variables namely; Current (Amps.), Voltage (Volts.), Gas 
Flow Rate (L/min.) and five (5) response variables namely: Liquidus Temperature, Weld Time, Heat Transfer 
Coefficient, Ultimate Tensile Strength and Percentage Elongation in real values is presented in Table 2 below. 

Table 2: Central Composite Design (CCD) Matrix showing Experimental Results & Data 

Run Input Parameters Output 
Parameter 

Welding 
Current 

(Ampere) 

Welding 
Voltage 

(Volt.) 

Gas 
Flow 
Rate 

(L/min) 

Liquidus 
Temp. 

(
o
C) 

1 180 20 18 1450 
2 195 20 15 1348 
3 210 20 18 1475 
4 180 21.5 18 1453 
5 180 20 16.5 1378 
6 195 21.5 18 1434 
7 210 23 18 1397 
8 210 23 15 1535 
9 180 23 15 1496 
10 210 21.5 18 1484 
11 210 23 15 1504 
12 210 23 15 1541 
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13 180 20 18 1468 
14 195 21.5 16.5 1449 
15 210 23 16.5 1485 
16 210 23 18 1398 
17 180 20 18 1465 
18 180 23 18 1438 
19 210 21.5 16.5 1448 
20 210 20 16.5 1462 
      

III.  RESULTS AND DISCUSSION 

The model statistics actually give insight into the model strength and the adequacy of the optimal second order 
polynomial equation. 

Table 3: Model Fit Summary Statistics for Liquidus Temperature response variable 

Source Sequential p-value Lack of Fit p-value Adjusted R² Predicted R²  
Linear 0.1944 0.0854 0.1077 -0.4524  

2FI 0.0544 0.6267 0.8391 0.6336  
Quadratic < 0.0001 0.8728 0.8992 0.7690 Suggested 

Cubic 0.8728  0.8202  Aliased 
 

The Table 3 above shows the selected model fit summary of the response variable, Liquidus Temperature. The 
selected model is based on the best probability value with less error in the selected model system. The selected 
model for Liquidus Temperature is Quadratic non-linear model with a significance value that is less than 
0.0001.  

Table 4:  Model Summary Statistics 

Source Std. Dev. R² Adjusted R² Predicted R² PRESS  
Linear 57.09 0.2486 0.1077 -0.4524 1.008E+05  

2FI 24.25 0.8899 0.8391 0.6336 25433.07  
Quadratic 19.19 0.9469 0.8992 0.7690 16033.24 Suggested 

Cubic 25.63 0.9716 0.8202  * Aliased 

Focus on the model maximizing the Adjusted R² and the Predicted R².: 

The model summary statistics of model’s fit shows the Standard Deviation, the R2, Adj.R2, Pred. R2 and the 
PRESS values for each complete model. 

In assessing the strength of the Quadratic Model towards optimizing (minimizing) the Liquidus Temperature 
response variable, one-way analysis of variance (ANOVA) was employed as shown in Fig.1. 
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Fig.1: ANOVA Model Statistical Summary for Liquidus Temperature. 

Analysis of variance (ANOVA) was needed to check whether or not the model is significant and also to evaluate 
the significant contributions of the linear term coefficients, the interactive term coefficients and the quadratic 
sum term coefficients on the response. The model F-value of 19.83 implies the model is significant. There is 
only a 0.01% chance that an F-value this large could occur due to noise. P-values less than 0.0500 indicate 
model terms are significant. In this case A, C, AB, BC, C² are significant model terms. Values greater than 
0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting 
those required to support hierarchy), model reduction may improve the model. The Lack-of-Fit F-value of 0.37 
implies the Lack -of-Fit is not significant relative to the pure error. There is an 87.28% chance that a Lack-of-Fit 
F-value this large could occur due to noise. Non-significant lack of fit is good as it indicates a model that is 
significant. 

Table 5:  Fit Statistics for validating model significance towards minimizing L.T. 

Std. Dev. 19.19  R² 0.9469 
Mean 1466.35  Adjusted R² 0.8992 
C.V. % 1.31  Predicted R² 0.7690 
PRESS 16033.24  Adeq Precision 20.8083 

In Table 5 above, the model fit summary statistics shows that the Coefficient of Determination (R2) of the input 
factors and the response variable for the model are significantly adequate to the model developed for the 
Liquidus Temperature response variable. The Coefficient of Determination of the variables shows that 94.69% 
of the input factors will be explained in the response variable of Liquidus Temperature. The Predicted R² of 
0.7690 is in reasonable agreement with the Adjusted R² of 0.8992; i.e. the difference is less than 0.2. Adequacy 
Precision measures the signal-to-noise ratio. A ratio greater than 4 is desirable. The ratio of 20.808 indicates an 
adequate signal. This model can be used to navigate the design space. 

A. Diagnostic Plots 
The diagnostic case statistics actually give insight into the model strength and the adequacy of the optimal 
second order polynomial equation. 
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Fig.2: Normal Probability Plot of Studentized Residuals 

Fig. 2 above shows the Normal Probability Plot of the residuals for the Liquidus Temperature to check for 
normality of the residuals on the response variable. The plot shows that the residuals are normally distributed on 
the response.  

 

Fig.3: The Diagnosis of the Cook’s Distance for Liquidus Temperature 
  

The Fig. 3 shows the diagnosis of the input factors and the response variable to check and to look for outliers 
that will cause the influential values in the system. The Cook’s distance shows that only one of the experimental 
trials cause bias. The cook’s distance is a measure of how much the regression would change if the outlier is 
omitted from the analysis. The single point that has a very high distance value relative to the other points should 
be carefully monitored or investigated to ensure that it didn’t cause bias in the system. However, the other 
experimental trials are good and fit to predict the feasible response variable in the system. The cooks distance 
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falls within the range of 0 and 1 indicating that there is only one outlier in the data making the optimal solution 
strongly accepted. 

 
  

Fig. 4: Predicting Liquidus Temperature using Contour Plot 
 

The Contour Plot in Fig.4 shows the influence of the input factors on the Liquidus Temperature response 
variable at the highlighted points.  

 
  

Fig.5: 3-D Surface Plot showing effects of Current and Voltage on L.T. response variable 
 

Fig.5 shows the influence of the input variables (Welding Current, Welding Voltage and Gas Flow Rate) on the 
Percentage Elongation response variable. The edges of the surface plots indicates the corresponding values of 
the response variables (Weld Time, Liquidus Temperature, Heat Transfer Coefficient, Ultimate Tensile Strength 
and Percentage Elongation) at the coordinate levels of the input variables. 
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B. Optimal Solutions 

The numerical optimization produced twenty (20) optimal solutions. The Optimal Solutions for the input 
process parameters indicate that the optimal solutions for Welding Current is 180.00Amps, Welding Voltage is 
21.672Volts and Gas Flow Rate is 15.504L/min, and the optimal solution for the Liquidus Temperature 
response variable is 1484.7830C, indicating that the experimental trials are good and fit to predict the feasible 
response variable in the system. Therefore, the model can be used to navigate the design space.   
  
1. Artificial Neural Network (ANN) Algorithm 

Artificial Neural Network analysis occurs in sequences and via neural network layers made up of 
artificial neurons. 

Sequence 1: Data Selection. 

Neural Network analysis starts with the selection and training of an ANN model using a historical data. Real 
data from the experiment is then fed into the trained predictive model for analysis in order to predict future 
outcomes. The data fed into the neural network for analysis are both the input and output parameters generated 
as a result of experimental trials conducted in the research (See Table 2). The artificial neural network will 
select and analyze the data and predict outcomes for each of the experimental trials. 

Sequence 2: Data Training, Validation and Testing. 

In the analysis of the data, Artificial Neural Network (ANN) randomly by default divides the 100% target 
timesteps (Real data) into three sets: Training Data (70%), Validation Data (15%) and Testing Data (15%). 
Seventy percent (70%) of the data are presented to the network during training and the network is adjusted 
according to the data errors. Fifteen percent (15%) of the data are used by the network to measure 
generalizations from the analysis, and to halt the data training once generalizations stop improving. And this is 
referred to as data validation. Fifteen percent (15%) of the remaining data used for testing has no effect on the 
data training, but serves as an independent measure of network performance during and after training of the 
data. 

The Artificial Neural Network (ANN) is trained to fit the input process variables and the output response 
variables. The type of data training method used in this research study is Levenberg-Marquardt back 
propagation. Training of the data automatically stops when the generalizations stops improving as indicated by 
an increase in the mean square error (MSE) of the validation samples. The mean square error (MSE) is the 
average squared difference between outputs and targets. The smaller the mean square error value (MSE) the 
better the predicted result while a mean square error (MSE) of zero (0) means that there is no error at all. 
Regression (R) values measure the correlation between the output values and the target values. A regression (R) 
value of one (1) means a close relationship but an R value of zero (0) means a random relationship.  

Sequence 3: Trained Results of Neural Network Data Analysis. 
The neural network (NN) then reveals the least Mean Square Error (MSE) value that gives the best fit data (that 
is, the predicted results). The data performance in this study shows that the least value of the Mean Square Error 
(MSE) in the data is very insignificant with an average value of 4.35x 10-26 units at the eight (8) iteration of the 
data training which is the best fitted data result.  
The best validation of the performance result is 2382.3681 units at the eight (8) iterations of the trained data. 
The Validation performance data value, Testing data and the Best fit data are closely related. However, the Best 
fit data is generated at the eight iterations with the Least Mean Square Error in the system. 
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Sequence 4: Regression Results of the Artificial Neural Network Data Analysis. 

The result of the Trained Artificial Neural Network data analysis shows that the trained data output parameter 
has a Regression Correlation (R) of unity (1). The Validation Data generated in the system has Regression 
Correlation (R) of 0.99646 units. The Testing Data generated also have a Regression Correlation (R) of 0.99791 
units. However, the Overall Regression Correlation (R) of the data is 0.99893 units. This shows that the input 
process factors and the output process parameters have strong correlations at an average of 0.99893 units. This 
shows that the data used in the system are good and fit for statistical analysis.  

Table 6: ANN Predicted Results 

 Predicted Output Predicted Residual 

S/N Liquidus Temp.(
o
C) Liquidus Temp. (

o
C) 

1 1252.823 197.1769 
2 1355.894 194.1055 
3 1036.969 338.0311 
4 1300.915 152.0854 
5 1251.534 126.4657 
6 1216.718 187.2819 
7 1111.689 278.3108 
8 1315.207 119.7927 
9 1405.108 -9.10773 

10 1382.936 101.0643 
11 1554.218 -50.2182 
12 1487.518 44.48238 
13 1592.888 -104.888 
14 1509.781 -36.7814 
15 1354.555 30.4445 
16 1437.192 -39.1922 
17 1417.276 47.72365 
18 1299.032 138.9682 
19 1390.212 57.78845 
20 1464.49 -2.49 

  

Table 6 shows the Artificial Neural Network (ANN) predicted results of the Liquidus Temperature response 
variable. The result shows that the predicted response parameter for Liquidus Temperature is 1464.490C. The 
ANN result shows that the input process factors and the output process parameters have strong Coefficient of 
Determination (R) of the variables with an average of 0.99893 units (i.e. 99.89%). This shows that the data used 
in the system are good and fit for adequate statistical analysis. Therefore, the predictive model can be used to 
navigate the design space. 
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C. Discussion of Results 

In this study, the response surface methodology (RSM) and artificial neural network (ANN) was used 
respectively to optimize and predict weld parameters. The goal of the optimization process is to determine the 
most appropriate percentage combination of the Liquidus Temperature with the optimum values of Welding 
Current (Amps.), Welding Voltage (Volts.) and Gas Flow Rate (L/min) that will adequately optimize (minimize) 
the Liquidus Temperature content in the mild steel weld metal. In the course of the experiment, ranges of values 
of the input parameters and output parameters were observed and recorded which makes up the data (that is, the 
results from the weld specimens). A statistical design of experiment (DOE) using the central composite design 
method (CCD) was developed. Then, an experimental design matrix having twenty (20) experimental runs was 
generated. The input parameters and the output parameters make up the experimental matrix. Both the 
experimental matrix designed and the optimization analyses were executed with the aid of statistical tool called 
Design Expert Software 10.0.1 (DX.10.0.1).  

The result of the model analysis shows that a Quadratic Model for the process order which requires the 
polynomial analysis was selected for the response variables. The highest order polynomial where the additional 
terms are significant for the process factors, the model was selected as the best fitted model. In addition, the 
selected models have insignificant Lack-of-Fit. Model with significant Lack-of-fit cannot be employed for 
prediction. The reason for selection was the reasonable agreement between the P-value, R-Square value, the 
Predicted R-Square value, Adjusted R-Square value and the PRESS value. The model design summary shows 
that the minimum value observed for Liquidus Temperature is 1427.4420C, with a maximum value of 
1488.8930C, mean value of 1466.350C, and standard deviation of 19.19. The Optimal Solution for the response 
variable, Liquidus Temperature is 1484.7830C.The model has a high signal-to-noise ratio of 20.808. In assessing 
the strength of the Quadratic Model towards optimizing the target response, one-way analysis of variance 
(ANOVA) table was generated for the response variable and results obtained is presented in Fig. 1. From the 
analysis of variance (ANOVA); Fig. 1, it was observed that welding current (WC) input parameter has more 
significant effect on the Liquidus temperature response variable. 
To validate the adequacy of the Quadratic Model based on its ability in minimizing Liquidus Temperature, the 
goodness of fit statistics presented in Table 5 was employed. 

From the Coefficient Estimation Analyses of the models, it was observed that the models possess a low standard 
error ranging. Standard errors should be similar within type of coefficient; however the smaller the standard 
error the better the result of the design. The Variance Inflation Factor (VIF) in this research is between one (1) 
to three point forty five (3.45) which shows that the Coefficient of Estimation of the input factors to the 
response parameters are adequate and is good as well as fit enough for more appropriate modeling of the system. 
Variance Inflation Factors (VIF) greater than ten (10) can cause bias in the modeling system and there is need to 
checkmate such factor or even replace the experimental trial, but Variance Inflation Factors (VIF) that is close 
to unity is good and fit for an adequate modeling of the response parameters. Variance Inflation Factor (VIF) 
less than 10.00 calculated for all the terms in the design indicated a significant model in which the input 
variables are well correlated with the response.  

Using Artificial Neural Network algorithm, the result of Table 6 observed that the Predicted Optimal Solution 
for the welding will produce a weldment with a Liquidus Temperature optimal value of 1464.49˚С. The input 
factors and the response variable have an overall strong correlation (R) of 99.893%. 

This research study has successfully demonstrated and well established a Response Surface Methodology 
(RSM) and Artificial Neural Network (ANN) algorithms to optimize and predict the Mild Steel weld metal 
parameters. In this study, the application of the welding input parameters design was used to express the optimal 
solutions of the response variables of the Mild Steel weldment.  
The development of a second order polynomial solution has been successfully achieved, validated by graphical 
and statistical results such as calculated Standard Error values, Variance Inflation Factor, Normal Probability 
Plot and Cook’s Distance plot etc. A scientific approach to determine the cause and effect relationship between 
the process parameters using expert systems has been successfully established and well demonstrated in this 
research study. 
In testing the accuracy of the models in actual application, experiment revealed that the models can be used for 
optimal solutions mostly in optimization of manufacturable input parameters in establishments that utilize steel 
materials, steel manufacturing companies and in industrialization generally. The optimal solutions and the 
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models developed will influence the activities of Mild Steel production and usage. The application of the 
optimal solutions of the results will be of economic value to the utilizing companies and in the material usage. 
The research will serve as a reference to the users of Mild Steel and its application in Tungsten Inert Gas (TIG) 
welding process and in industries. 
 
 

IV. CONCLUSION 

The quality and integrity of welded joints is highly influenced by the optimal combination of the welding input 
parameters. This research work focuses on the optimization and prediction of the Liquidus Temperature of mild 
steel weld metal using RSM and ANN. The general research study aims to optimize and predict the Weld Time, 
Liquidus Temperature, Heat Transfer Coefficient and their effects on Mild Steel weldment strength using RSM 
and ANN. This research study developed models using expert systems (RSM) and neural network (ANN) to 
optimize and predict weld metal Weld Time, Liquidus Temperature, Heat Transfer Coefficient, Ultimate Tensile 
Strength and Percentage Elongation from input parameters namely: Welding Current (WC), Welding Voltage 
(WV) and Gas Flow Rate (GFR). Results from the Response Surface Methodology analysis shows that a 
Welding Current of 180.00Amps, Welding Voltage of 21.672Volts, Gas Flow Rate of 15.504L/min will produce 
an optimal solution of Liquidus Temperature of 1484.7830C with a Coefficient of Determination (R2) of 94.69% 
and with a Desirability of 0.836. Using Artificial Neural Network algorithm (ANN), the network predicted that 
the input process factors and the response variables has an overall strong Regression (R) or Coefficient of 
Determination (R-Square) of 99.89%. However, in Artificial Neural Network (ANN), the result observed that 
the predicted optimal value for the Liquidus Temperature response variable is 1464.490C. The mathematical 
relationship between the optimal input parameters and the response variables obtained from this research study 
is an improvement in the weld joint quality, and will save cost and time, and also minimize error in the mild 
steel welded joint and heat affected zones (HAZ). The information gathered from this study will also aid 
fabrication industries and industrialists to adequately select parameters and produce appropriate materials and 
structures required from the mild steel material. It is therefore recommended that the optimal Liquidus 
Temperature and the optimized input parameters obtained in this study be employed so as to achieve the desired 
molten weld metal, weld strength and quality and also to minimize error in the welded joint and the heat 
affected zones (HAZ). It is also recommended that the optimal Liquidus Temperature and optimized input 
parameters obtained from this study be utilized by users of the mild steel components and its applications for 
more economic value.   
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